留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于立方体注意力的印度洋偶极子预测模型

郑梦轲 方巍

郑梦轲,方巍. 一种基于立方体注意力的印度洋偶极子预测模型[J]. 海洋学报,2025,47(12):126–135 doi: 10.12284/hyxb20250127
引用本文: 郑梦轲,方巍. 一种基于立方体注意力的印度洋偶极子预测模型[J]. 海洋学报,2025,47(12):126–135 doi: 10.12284/hyxb20250127
Zheng Mengke,Fang Wei. A cuboid attention-based IOD prediction model[J]. Haiyang Xuebao,2025, 47(12):126–135 doi: 10.12284/hyxb20250127
Citation: Zheng Mengke,Fang Wei. A cuboid attention-based IOD prediction model[J]. Haiyang Xuebao,2025, 47(12):126–135 doi: 10.12284/hyxb20250127

一种基于立方体注意力的印度洋偶极子预测模型

doi: 10.12284/hyxb20250127
基金项目: 国家自然科学基金面上项目(42475149);灾害天气国家重点实验室开放课题(2024LASW-B19);广西重点研发计划(桂科AB25069126)。
详细信息
    作者简介:

    郑梦轲(1997—),男,安徽省合肥市人,研究方向为深度学习、IOD预测。E-mail:1428592959@qq.com

    通讯作者:

    方巍,男,教授,研究方向为人工智能、大数据分析、机器学习和计算机视觉。E-mail:fangwei@nuist.edu.cn

  • 中图分类号: P732

A cuboid attention-based IOD prediction model

  • 摘要: 印度洋偶极子(Indian Ocean Dipole, IOD)是热带印度洋海表温度呈现东西反位相变化的主要气候模态,对区域和全球气候演变具有重要影响。现有的IOD预测方法多依赖于多变量耦合或传统统计模型,存在计算复杂度高、多变量噪声干扰等挑战。针对这些挑战,本文提出了一种基于立方体注意力机制的IOD预测模型(Cuboid Attention-based IOD Prediction Model, CAIPM)。该模型仅以海表温度异常(Sea Surface Temperature Anomaly, SSTA)作为输入变量,加入融合了滑动窗口、时序差分与空间卷积的时空梯度增强模块(Spatio-Temporal Gradient Enhancement Module, STGEM),以强化时空特征提取,通过立方体注意力结构有效捕捉SSTA场中的时空依赖关系,直接输出未来时空范围的SSTA预测结果,进而计算出IOD指数。实验表明,CAIPM在IOD指数预测中显著优于传统统计方法及当前主流深度学习模型,CAIPM在提前12个月的IOD指数预测中,其皮尔逊相关系数相较于CNN、CNN-LSTM、TCN和ConvLSTM模型分别取得了约32%、22%、16%和6%的性能提升。
  • 图  1  模型结构

    Fig.  1  Model structure

    图  2  全局向量更新过程

    Fig.  2  Global vector update process

    图  3  各模型DMI指数相关技巧情况

    Fig.  3  Correlation skill of DMI index prediction for each model

    图  4  消融实验多指标对比图

    Fig.  4  Ablation study: multi-metric comparison

    图  5  超参数(cuboid_size + shift)对模型误差指标的影响

    Fig.  5  Effect of hyperparameters (cuboid_size + shift) on model error metrics

    图  6  CAIPM预测2023年1–12月的DMI指数与DMI指数真实值比较

    Fig.  6  Comparison of predicted DMI Index by CAIPM model and actual DMI Index from January 2023 to December 2023

    表  1  CMIP6数据信息

    Tab.  1  CMIP6 data information

    序号 模式名称 所属国 原始分辨率 研发机构
    1 ACCESS-ESM1-5 澳大利亚 1° × 1° CSIRO
    2 FGOALS-g3 中国 1° × 1° CAS
    3 IPSL-CM6A-LR 法国 1.5° × 1.25° IPSL
    4 MIROC6 日本 1° × 1° MIROC
    5 MRI-ESM2-0 日本 0.5° × 0.5° MRI
    6 NorESM2-MM 挪威 1° × 1° NCC
    下载: 导出CSV

    表  2  SODA和GODAS数据信息

    Tab.  2  Data information of SODA and GODAS

    序号 再分析数据 版本号 所属国 原始分辨率 研发机构
    1 SODA 3.4.2 美国 0.5° × 0.5° UMD
    2 GODAS v8 美国 1° × 1° NCEP
    下载: 导出CSV

    表  3  各模型评价指标对比结果

    Tab.  3  Comparison results of evaluation metrics for each model

    模型MSEMAERMSE
    No STGEM0.66270.64450.8261
    No Attention-I0.65430.61120.8137
    No Attention-O0.70570.67820.7943
    All no0.71640.69570.8451
    CAIPM0.63520.58380.7936
      注:表中MSE、MAE和RMSE数据为测试集中所有样本在相应模型预测下的平均值。
    下载: 导出CSV
  • [1] 郑梦轲, 方巍, 张霄智. 深度学习在印度洋偶极子预测中的应用研究综述[J]. 海洋学研究, 2024, 42(3): 51−63 doi: 10.3969/j.issn.1001-909X.2024.03.004

    Zheng Mengke, Fang Wei, Zhang Xiaozhi. Review of application of deep learning in Indian Ocean Dipole prediction[J]. Journal of Marine Sciences, 2024, 42(3): 51−63. doi: 10.3969/j.issn.1001-909X.2024.03.004
    [2] 滕宇威, 张文君, 刘超, 等. ENSO空间形态变异对ENSO-IOD关系年代际减弱的可能作用[J]. 气象学报, 2020, 78(2): 210−220.

    Teng Yuwei, Zhang Wenjun, Liu Chao, et al. Possible role of ENSO spatial pattern variation in interdecadal weakening of ENSO-IOD relationship[J]. Acta Meteorologica Sinica, 2020, 78(2): 210−220.
    [3] An S I, Park H J, Kim S K, et al. Main drivers of Indian Ocean Dipole asymmetry revealed by a simple IOD model[J]. npj Climate and Atmospheric Science, 2023, 6(1): 93. doi: 10.1038/s41612-023-00422-2
    [4] Bahiyah A, Wirasatriya A, Mardiansyah W, et al. Massive SST-front anomaly in the tip of Sumatra waters triggered by extreme positive IOD 2019 event[J]. International Journal of Remote Sensing, 2024, 45(23): 8919−8936. doi: 10.1080/01431161.2023.2268821
    [5] Sun Shuangwen, Fang Yue, Zu Yongcan, et al. Increased occurrences of early Indian Ocean Dipole under global warming[J]. Science Advances, 2022, 8(47): eadd6025. doi: 10.1126/sciadv.add6025
    [6] Magee A D, Kiem A S. Using indicators of ENSO, IOD, and SAM to improve lead time and accuracy of tropical cyclone outlooks for Australia[J]. Journal of Applied Meteorology and Climatology, 2020, 59(11): 1901−1917. doi: 10.1175/JAMC-D-20-0131.1
    [7] Roy I, Mliwa M, Troccoli A. Important drivers of East African monsoon variability and improving rainy season onset prediction[J]. Natural Hazards, 2024, 120(1): 429−445. doi: 10.1007/s11069-023-06223-3
    [8] Cherchi A, Terray P, Ratna S B, et al. Indian Ocean Dipole influence on Indian summer monsoon and ENSO: a review[M]//Chowdary J, Parekh A, Gnanaseelan C. Indian Summer Monsoon Variability. Amsterdam: Elsevier, 2021: 157−182.
    [9] Cai Wenju, Yang Kai, Wu Lixin, et al. Opposite response of strong and moderate positive Indian Ocean Dipole to global warming[J]. Nature Climate Change, 2021, 11(1): 27−32. doi: 10.1038/s41558-020-00943-1
    [10] Iskandar I, Lestari D O, Saputra A D, et al. Extreme positive Indian Ocean Dipole in 2019 and its impact on Indonesia[J]. Sustainability, 2022, 14(22): 15155. doi: 10.3390/su142215155
    [11] Saji N H, Goswami B N, Vinayachandran P N, et al. A dipole mode in the tropical Indian Ocean[J]. Nature, 1999, 401(6751): 360−363.
    [12] Cai Wenju, Santoso A, Wang Guojian, et al. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming[J]. Nature, 2014, 510(7504): 254−258. doi: 10.1038/nature13327
    [13] Sarkar P P, Janardhan P, Roy P. A novel deep neural network model approach to predict Indian Ocean dipole and Equatorial Indian Ocean oscillation indices[J]. Dynamics of Atmospheres and Oceans, 2021, 96: 101266. doi: 10.1016/j.dynatmoce.2021.101266
    [14] Feng Yuan, Li Chen, Sun Tianying. The study based on the deep learning for Indian Ocean Dipole (IOD) index predication[C]//Proceedings of the ACM Turing Award Celebration Conference – China. Hefei: Association for Computing Machinery, 2021: 23−27.
    [15] Feng Ming, Boschetti F, Ling Fenghua, et al. Predictability of sea surface temperature anomalies at the eastern pole of the Indian Ocean Dipole—using a convolutional neural network model[J]. Frontiers in Climate, 2022, 4: 925068. doi: 10.3389/fclim.2022.925068
    [16] Liu Jun, Tang Youmin, Wu Yanling, et al. Forecasting the Indian Ocean Dipole with deep learning techniques[J]. Geophysical Research Letters, 2021, 48(20): e2021GL094407. doi: 10.1029/2021GL094407
    [17] Ling Fenghua, Luo Jingjia, Li Yue, et al. Multi-task machine learning improves multi-seasonal prediction of the Indian Ocean Dipole[J]. Nature Communications, 2022, 13(1): 7681. doi: 10.1038/s41467-022-35412-0
    [18] 方巍, 张霄智, 齐媚涵. MEPM模型: 基于深度学习的多变量厄尔尼诺−南方涛动预测模型[J]. 地球科学与环境学报, 2024, 46(3): 285−297. doi: 10.19814/j.jese.2023.08029

    Fang Wei, Zhang Xiaozhi, Qi Meihan. MEPM: multivariate ENSO prediction model based on deep learning[J]. Journal of Earth Sciences and Environment, 2024, 46(3): 285−297. doi: 10.19814/j.jese.2023.08029
    [19] 张霄智, 方巍, 王淏西. 基于Swin-Transformer和时空融合注意力机制的ENSO预测[J]. 海洋学报, 2024, 46(12): 111−121. doi: 10.12284/hyxb2024127

    Zhang Xiaozhi, Fang Wei, Wang Haoxi. ENSO prediction based on Swin-Transformer and spatio-temporal fusion attention mechanism[J]. Haiyang Xuebao, 2024, 46(12): 111−121. doi: 10.12284/hyxb2024127
    [20] 周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5): 445−456.

    Zhou Tianjun, Zou Liwei, Chen Xiaolong. Commentary on the coupled model intercomparison project phase 6 (CMIP6)[J]. Climate Change Research, 2019, 15(5): 445−456.
    [21] Carton J A, Giese B S. A reanalysis of ocean climate using simple ocean data assimilation (SODA)[J]. Monthly Weather Review, 2008, 136(8): 2999−3017. doi: 10.1175/2007MWR1978.1
    [22] Saha S, Nadiga S, Thiaw C, et al. The NCEP climate forecast system[J]. Journal of Climate, 2006, 19(15): 3483−3517. doi: 10.1175/JCLI3812.1
    [23] Gao Zhihan, Shi Xingjian, Wang Hao, et al. Earthformer: exploring space-time transformers for earth system forecasting[C]//Proceedings of the 36th International Conference on Neural Information Processing Systems. New Orleans: Curran Associates Inc. , 2022: 1841.
    [24] Ham Y G, Kim J H, Luo Jingjia. Deep learning for multi-year ENSO forecasts[J]. Nature, 2019, 573(7775): 568−572. doi: 10.1038/s41586-019-1559-7
    [25] Sun Ming, Chen Lin, Li T, et al. CNN-based ENSO forecasts with a focus on SSTA zonal pattern and physical interpretation[J]. Geophysical Research Letters, 2023, 50(20): e2023GL105175. doi: 10.1029/2023GL105175
    [26] Fan Jin, Zhang Ke, Huang Yipan, et al. Parallel spatio-temporal attention-based TCN for multivariate time series prediction[J]. Neural Computing and Applications, 2023, 35(18): 13109−13118. doi: 10.1007/s00521-021-05958-z
    [27] Zha Wenshu, Liu Yuping, Wan Yujin, et al. Forecasting monthly gas field production based on the CNN-LSTM model[J]. Energy, 2022, 260: 124889. doi: 10.1016/j.energy.2022.124889
    [28] Elmaz F, Eyckerman R, Casteels W, et al. CNN-LSTM architecture for predictive indoor temperature modeling[J]. Building and Environment, 2021, 206: 108327. doi: 10.1016/j.buildenv.2021.108327
    [29] Geng Huantong, Hu Zhongyan, Wang Tianlei. ConvLSTM based temperature forecast modification model for North China[J]. Journal of Tropical Meteorology, 2022, 28(4): 405−412. doi: 10.46267/j.1006-8775.2022.030
    [30] Moishin M, Deo R C, Prasad R, et al. Designing deep-based learning flood forecast model with ConvLSTM Hybrid Algorithm[J]. IEEE Access, 2021, 9: 50982−50993. doi: 10.1109/ACCESS.2021.3065939
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  287
  • HTML全文浏览量:  114
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-13
  • 修回日期:  2025-12-12
  • 网络出版日期:  2025-08-21
  • 刊出日期:  2025-12-31

目录

    /

    返回文章
    返回