留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

风−浪−涌极限环境条件模型及其相关结构分析

姜云木 余丁浩 李钢 董志骞

姜云木,余丁浩,李钢,等. 风−浪−涌极限环境条件模型及其相关结构分析[J]. 海洋学报,2025,47(12):70–83 doi: 10.12284/hyxb20250121
引用本文: 姜云木,余丁浩,李钢,等. 风−浪−涌极限环境条件模型及其相关结构分析[J]. 海洋学报,2025,47(12):70–83 doi: 10.12284/hyxb20250121
Jiang Yunmu,Yu Dinghao,Li Gang, et al. A model of extreme environmental conditions for wind–wave–swell and related structural analysis[J]. Haiyang Xuebao,2025, 47(12):70–83 doi: 10.12284/hyxb20250121
Citation: Jiang Yunmu,Yu Dinghao,Li Gang, et al. A model of extreme environmental conditions for wind–wave–swell and related structural analysis[J]. Haiyang Xuebao,2025, 47(12):70–83 doi: 10.12284/hyxb20250121

风−浪−涌极限环境条件模型及其相关结构分析

doi: 10.12284/hyxb20250121
基金项目: 国家自然科学基金(52225804,52378219);中央高校基本科研业务费(DUT22RC3038,DUTZD25117)。
详细信息
    作者简介:

    姜云木(1997—),男,黑龙江省肇东市人,博士研究生,研究方向为海洋环境的随机动力建模与海洋结构的抗灾/耐久性评估。E-mail:jiangyunmu@mail.dlut.edu.cn

    通讯作者:

    李钢,男,教授,研究方向为工程结构防灾减灾。E-mail:gli@dlut.edu.cn

  • 中图分类号: P751

A model of extreme environmental conditions for wind–wave–swell and related structural analysis

  • 摘要: 准确评估海洋工程结构的长期极限响应是确保其生存条件的基础,而外部环境条件种类不清晰是影响这一评估的关键因素。现有研究普遍倾向于将风与风浪等纳入优先考虑范围,但实际海况往往呈现出风浪与涌浪相互叠加的多模态特征。基于单峰波谱的波浪时程生成方法难以表征其多模态特性,也无法揭示风、风浪与涌浪三者之间的统计依赖性,导致环境变量联合分布复杂性被低估,从而影响后续结构可靠性和安全性。涌浪作为强度可与风浪相当的低频波,易激发海上风电这类柔性结构的低频共振,进而放大动力响应和累积疲劳损伤。国际电工委员会(IEC)今年发布的行业规范《IEC 61400-3-2:2025》以及全国风电标准化技术委员会牵头制定的《风能发电系统漂浮式海上风力发电机组一体化计算分析导则》均已明确将涌浪列为必须考虑的工况。因此,本文将涌浪作为与风、风浪并列的灾种,基于南海、东海、渤海和黄海典型站点的再分析气象数据,构建了三者的联合概率模型,并通过相关性分析、Granger因果检验和条件概率分析,揭示了不同海域的多灾害相关结构规律。最后,以南海为例,结合环境等值线法(ECM)构建了包含风、风浪与涌浪的极限环境模型。结果表明,纳入涌浪后,环境变量组合的复杂性显著增加;忽略涌浪将导致环境条件模型失真,并低估极端环境的强度。该研究通过在传统风、风浪基础上进一步引入涌浪,并分析了其作为灾种的必要性,一定程度上弥补了现有海洋环境条件种类不清晰的问题,为海洋结构的长期极限响应评估提供了完整且精准的环境输入模型。
  • 图  1  研究流程

    Fig.  1  Flow chart of research

    图  2  风、风浪、涌浪数据的条形图

    a. 南海三亚“三峡引领号”海上风电场,b. 东海大桥海上风电场址,c. 黄海华能山东半岛北L场址海上风电场,d. 华能天津港东疆北防波堤风电场

    Fig.  2  Bar charts of wind, wind-generated wave, and swell data

    a. Sanya “Three Gorges Yinling” offshore wind farm, South China Sea; b. Donghai Bridge offshore wind farm site; c. Huaneng Shandong Peninsula North-L site offshore wind farm, Yellow Sea; d. Huaneng Tianjin Port Dongjiang north breakwater wind farm

    图  3  环境变量的概率密度函数图

    Fig.  3  Probability density function (PDF) of environment variables

    图  4  Vine-Copula示意图

    Fig.  4  Vine-Copula diagram

    图  5  Pearson相关性热图

    a. 南海三亚“三峡引领号”海上风电场,b. 东海大桥海上风电场址,c. 黄海华能山东半岛北L场址海上风电场,d. 华能天津港东疆北防波堤风电场

    Fig.  5  Hot-map of correlation Pearson coefficient

    a. Sanya “Three Gorges Yinling” offshore wind farm, South China Sea; b. Donghai Bridge offshore wind farm site; c. Huaneng Shandong Peninsula North-L site offshore wind farm, Yellow Sea; d. Huaneng Tianjin Port Dongjiang north breakwater wind farm

    图  6  南海三亚“三峡引领号”海上风电场Spearman相关性热图

    Fig.  6  Hot-map of correlation Spearman coefficient of Sanya Three Gorges “Yinling” offshore wind farm, South China Sea

    图  7  GCT结果热图

    a. 南海三亚“三峡引领号”海上风电场,b. 东海大桥海上风电场址,c. 黄海华能山东半岛北L场址海上风电场,d. 华能天津港东疆北防波堤风电场;NaN表无效的数值

    Fig.  7  The heatmap of results of GCT

    a. Sanya “Three Gorges Yinling” offshore wind farm, South China Sea; b. Donghai Bridge offshore wind farm site; c. Huaneng Shandong Peninsula North-L site offshore wind farm, Yellow Sea; d. Huaneng Tianjin Port Dongjiang north breakwater wind farm;NaN means not a number

    图  8  南海三亚“三峡引领号”海上风电场不同涌浪强度下的条件概率密度函数

    a. 平均风速和风浪有效波高,b. 风浪有效波高和平均周期

    Fig.  8  Conditional joint PDF under the different swell intensity of Sanya “Three Gorges Yinling” offshore wind farm, South China Sea

    a. Average wind speed with significant wave height of wind-generated wave; b. significant wave height and average period of wind-generated wave

    图  9  东海大桥海上风电场址不同涌浪周期下的条件概率密度函数

    a. 平均风速和风浪有效波高,b. 风浪有效波高和平均周期

    Fig.  9  Conditional joint PDF under the different swell intensity of Donghai Bridge offshore wind farm site

    a. Average wind speed with significant wave height of wind-generated wave; b. significant wave height and average period of wind-generated wave

    图  10  风−风浪−涌浪相互作用示意图

    Fig.  10  Schematic diagram of wind, wind-generated wave and swell interaction

    图  11  联合累计分布函数(JCDF)与重现期

    Fig.  11  Joint cumulative distribution function (JCDF) and return period

    图  12  可靠空间的超球体投影

    Fig.  12  The projection of hypersphere in reliable space

    图  13  物理空间的环境等值面投影

    Fig.  13  the projection of ECM in physical space of south china sea

    表  1  平均风速高阶统计特征

    Tab.  1  Higher-order statistical features of average wind speed

    测点峰度偏度
    南海3.970.31
    东海3.430.49
    黄海2.970.55
    渤海3.780.76
    下载: 导出CSV

    表  2  Vine-Copula相关结构

    Tab.  2  The Vine-Copula correlation structure

    结构树 主节点 其他节点
    s1 s2 s3 s4 s5
    Tree 1 s1 Joe (4.16) Gumbel (1.41) Gumbel (1.45) Gumbel (6.08)
    Tree 2 s2 Amhaq (0.41) SurGumbel (1.12) T (−0.21,11.49)
    Tree 3 s5 T (−0.34,8.51) Amhaq (−0.71)
    Tree 4 s4 Gumbel (2.14)
    下载: 导出CSV
  • [1] 茹继平, 刘加平, 曲久辉, 等. 建筑、环境与土木工程[M]. 北京: 中国建筑工业出版社, 2011.

    Ru Jiping, Liu Jiaping, Qu Jiuhui, et al. Architecture Environmental and Civil Engineering[M]. Beijing: China Architecture & Building Press, 2011.
    [2] 林伊楠, 陶爱峰, 李雪丁, 等. 台湾海峡风涌浪分离方法研究[J]. 海洋学报, 2019, 41(11): 25−34.

    Lin Yinan, Tao Aifeng, Li Xueding, et al. Study on separation method of wind-wave and swell in the Taiwan Strait[J]. Haiyang Xuebao, 2019, 41(11): 25−34.
    [3] 周延东, 雷震名, 孙国民, 等. 涌浪基本理论研究综述[J]. 水道港口, 2016, 37(1): 1−6. doi: 10.3969/j.issn.1005-8443.2016.01.001

    Zhou Yandong, Lei Zhenming, Sun Guomin, et al. A review on basic theory research of swell[J]. Journal of Waterway and Harbor, 2016, 37(1): 1−6. doi: 10.3969/j.issn.1005-8443.2016.01.001
    [4] 史宪莹, 张宁川. 混合浪作用下系泊船舶运动响应规律试验研究[J]. 水动力学研究与进展, 2011, 26(5): 574−580. doi: 10.3969/j.issn1000-4874.2011.05.008

    Shi Xianying, Zhang Ningchuan. Experimental study of a mooring ship’s motion responses in mixed waves[J]. Chinese Journal of Hydrodynamics, 2011, 26(5): 574−580. doi: 10.3969/j.issn1000-4874.2011.05.008
    [5] Longuet-Higgins M S, Stewart R W. Changes in the form of short gravity waves on long waves and tidal currents[J]. Journal of Fluid Mechanics, 1960, 8(4): 565−583. doi: 10.1017/S0022112060000803
    [6] Yang Shanghui, Deng Xiaowei, Zhang Mingming, et al. Effect of wave spectral variability on the dynamic response of offshore wind turbine considering soil-pile-structure interaction[J]. Ocean Engineering, 2023, 267: 113222. doi: 10.1016/j.oceaneng.2022.113222
    [7] Ti Zilong, Wei Kai, Li Yongle, et al. Effect of wave spectral variability on stochastic response of a long-span bridge subjected to random waves during tropical cyclones[J]. Journal of Bridge Engineering, 2020, 25(1): 04019131 doi: 10.1061/(ASCE)BE.1943-5592.0001517
    [8] Li Gang, Jiang Yunmu, Yu Dinghao, et al. A mixed stochastic waves model for analyzing offshore structures considering engineering characteristics correlation of wind-generated-wave and swell[J]. Ocean Engineering, 2024, 314: 119671. doi: 10.1016/j.oceaneng.2024.119671
    [9] Han Xinyu, Jiang Yunpeng, Dong Sheng. Wave forces on crown wall of rubble mound breakwater under swell waves[J]. Ocean Engineering, 2022, 259: 111911. doi: 10.1016/j.oceaneng.2022.111911
    [10] Van Gent M R A. Influence of oblique wave attack on wave overtopping at caisson breakwaters with sea and swell conditions[J]. Coastal Engineering, 2021, 164: 103834. doi: 10.1016/j.coastaleng.2020.103834
    [11] Radfar S, Shafieefar M, Akbari H, et al. Design of a rubble mound breakwater under the combined effect of wave heights and water levels, under present and future climate conditions[J]. Applied Ocean Research, 2021, 112: 102711. doi: 10.1016/j.apor.2021.102711
    [12] Van Der Werf I M, Van Gent M R A. Wave overtopping over coastal structures with oblique wind and swell waves[J]. Journal of Marine Science and Engineering, 2018, 6(4): 149. doi: 10.3390/jmse6040149
    [13] Giske F I G, Leira B J, Øiseth O. Full long-term extreme response analysis of marine structures using inverse FORM[J]. Probabilistic Engineering Mechanics, 2017, 50: 1−8. doi: 10.1016/j.probengmech.2017.10.007
    [14] Low Y M, Huang Xiaoxu. Long-term extreme response analysis of offshore structures by combining importance sampling with subset simulation[J]. Structural Safety, 2017, 69: 79−95. doi: 10.1016/j.strusafe.2017.08.001
    [15] Giske F I G, Kvåle K A, Leira B J, et al. Long-term extreme response analysis of a long-span pontoon bridge[J]. Marine Structures, 2018, 58: 154−171. doi: 10.1016/j.marstruc.2017.11.010
    [16] Li Xuan, Zhang Wei. Long-term assessment of a floating offshore wind turbine under environmental conditions with multivariate dependence structures[J]. Renewable Energy, 2020, 147: 764−775. doi: 10.1016/j.renene.2019.09.076
    [17] Haver S, Winterstein S R. Environmental contour lines: a method for estimating long term extremes by a short term analysis[C]//Paper presented at the SNAME Maritime Convention. Houston: SNAME, 2008: D011S002R005.
    [18] Agarwal P, Manuel L. Simulation of offshore wind turbine response for long-term extreme load prediction[J]. Engineering Structures, 2009, 31(10): 2236−2246. doi: 10.1016/j.engstruct.2009.04.002
    [19] Winterstein S R, Ude T C, Cornell C A, et al. Environmental parameters for extreme response: inverse FORM with omission factors[C]//Proceedings of the 6th International Conference on Structural Safety and Reliability. Innsbruck: International Association for Structural Safety and Reliability, 1993: 551−557.
    [20] Karimirad M, Moan T. Extreme dynamic structural response analysis of catenary moored spar wind turbine in harsh environmental conditions[J]. Journal of Offshore Mechanics and Arctic Engineering, 2011, 133(4): 041103. doi: 10.1115/1.4003393
    [21] Rony J S, Karmakar D. Long-term response analysis of hybrid STLP-WEC offshore floating wind turbine[J]. Ships and Offshore Structures, 2025.
    [22] Manuel L, Nguyen P T T, Canning J, et al. Alternative approaches to develop environmental contours from metocean data[J]. Journal of Ocean Engineering and Marine Energy, 2018, 4(4): 293−310. doi: 10.1007/s40722-018-0123-0
    [23] Öhlschläger Y. Exploring the feasibility of placing a wind turbine on top of an FPSO[D]. Delft: Delft University of Technology, 2022.
    [24] Wang Xiaozhi, Pegg N. Proceedings of the 21st international ship and offshore structures congress VOLUME 3 discussions revision 1[C]//21st International Ship and Offshore Structures Congress Volume 3 Discussions. Vancouver, Canada: SNAME, 2022.
    [25] Chen Lingte. Integrated energy operation solution customized for floating offshore wind power characteristics[D]. Glasgow: University of Glasgow, 2024.
    [26] IEC. IEC 61400-3, Wind turbines-Part 3: design requirements for offshore wind turbines[S]. International Electrotechnical Commission, 2009.
    [27] IEC. IEC 61400-2, Wind turbines-Part 2: design requirements for small wind turbines[S]. International Electrotechnical Commission, 2013.
    [28] DNV. DNV-RP-C205, Environmental conditions and environmental loads[S]. Det Norske Veritas, 2017.
    [29] 中华人民共和国住房和城乡建设部. 城市绿地规划标准: GB/T 51346−2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban Rural Development of the People’s Republic of China. Standard for planning of urban green space: GB/T 51346-2019[S]. Beijing: China Architecture & Building Press, 2019.
    [30] Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999−2049. doi: 10.1002/qj.3803
    [31] Hersbach H, Bell B, Berrisford P, et al. The ERA5 Global Reanalysis: achieving a detailed record of the climate and weather for the past 70 years[C]//Proceedings of the 22nd EGU General Assembly. EGU, 2020: 10375.
    [32] Wang Jichao, Wang Yue. Evaluation of the ERA5 significant wave height against NDBC buoy data from 1979 to 2019[J]. Marine Geodesy, 2022, 45(2): 151−165. doi: 10.1080/01490419.2021.2011502
    [33] Çalışır E, Soran M B, Akpınar A. Quality of the ERA5 and CFSR winds and their contribution to wave modelling performance in a semi-closed sea[J]. Journal of Operational Oceanography, 2023, 16(2): 106−130. doi: 10.1080/1755876X.2021.1911126
    [34] Wright E E, Bourassa M A, Stoffelen A, et al. Characterizing buoy wind speed error in high winds and varying sea state with ASCAT and ERA5[J]. Remote Sensing, 2021, 13(22): 4558. doi: 10.3390/rs13224558
    [35] Chen Y C. A tutorial on kernel density estimation and recent advances[J]. Biostatistics & Epidemiology, 2017, 1(1): 161−187.
    [36] Joe H. Families of m-variate distributions with given margins and m(m-1)/2 bivariate dependence parameters[J]. Lecture Notes-Monograph Series, 1996, 28: 120−141.
    [37] Dißmann J, Brechmann E C, Czado C, et al. Selecting and estimating regular vine copulae and application to financial returns[J]. Computational Statistics & Data Analysis, 2013, 59: 52−69.
    [38] Kendall M G. A new measure of rank correlation[J]. Biometrika, 1938, 30(1/2): 81−93. doi: 10.2307/2332226
    [39] Pearson K. Notes on the history of correlation[J]. Biometrika, 1920, 13(1): 25−45. doi: 10.1093/biomet/13.1.25
    [40] Diks C, Panchenko V. A new statistic and practical guidelines for nonparametric Granger causality testing[J]. Journal of Economic Dynamics and Control, 2006, 30(9/10): 1647−1669.
    [41] Barnett L, Seth A K. The MVGC multivariate Granger causality toolbox: a new approach to Granger-causal inference[J]. Journal of Neuroscience Methods, 2014, 223: 50−68. doi: 10.1016/j.jneumeth.2013.10.018
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  60
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-24
  • 修回日期:  2025-12-03
  • 网络出版日期:  2025-12-17
  • 刊出日期:  2025-12-31

目录

    /

    返回文章
    返回