Application of an intelligent wave forecasting method to waters around the islands and reefs in the South China Sea
-
摘要: 为提升南海岛礁海域的波浪预报精度与模型泛化能力,本文基于BO-LSTM模型,系统探讨了输入因素作用、模型跨站位迁移能力及多步预测方法性能。研究采用单因素(历史波高)与双因素(历史波高+风速)输入,通过优化时间窗口,结合滚动预测法(RF)与直接多步预测法(DM),对七连屿、甘泉岛、晋卿岛和华夏暗沙4个站位的1~24 h有效波高进行预报验证。结果表明:模型表现与站点地理地貌揭示的水动力环境高度相关。七连屿站“半遮蔽−半开阔”的格局使其模型泛化能力最强且稳定(最佳窗口n = 2),在跨站预测中表现优异;而甘泉岛站、晋卿岛站等“潟湖内局地型”站点与华夏暗沙站“开阔水域型”站点,则因其地理特征主导的、差异化的数据分布导致了显著的“数据域偏移”,限制了模型的跨站迁移能力。短期预报中历史波高为核心因素,但其优势存在地理依赖性:七连屿站与晋卿岛站历史波高权重优势显著(>1.7倍),而甘泉岛站与华夏暗沙站风速贡献相对提升(优势比<1.4倍)。多步预测中,“DM+双”在短期至中期(1~18 h)综合最优,“RF+双”在长期(19~24 h)及甘泉岛站全时段更能抑制误差衰减。本研究验证了BO-LSTM在南海岛礁波浪预报中的有效性,并通过关联数据驱动规律与地理物理机制,为构建区域普适性智能预报模型提供了物理可解释的见解与方法支撑。Abstract: This study aims to enhance wave forecast accuracy and model generalization in the South China Sea island and reef waters using a BO-LSTM model. We systematically investigated the effects of input factors, model cross-station transferability, and multi-step prediction performance. The research employed single-factor (historical wave height) and dual-factor (historical wave height + wind speed) input schemes. Forecasts for 1−24 h were generated and validated at four stations (Qilianyu, Ganquan Island, Jinqing Island, and Huaxia Shoal) using the Rolling Forecast (RF) and Direct Multi-step (DM) methods. Results show that model performance is highly correlated with the hydrodynamic environment dictated by station geomorphology. The model trained on data from Qilianyu Station, with its “semi-sheltered to semi-open” setting, demonstrated the strongest and most stable generalization ability (optimal window n = 2) and excellent cross-station performance. In contrast, models for the “localized lagoon” stations (Ganquan Island, Jinqing Island) and the “open water” station (Huaxia Shoal) exhibited limited transferability due to significant “data domain shift” arising from their distinct geographic settings. For short-term forecasts, historical wave height was the core input factor, but its dominance showed geographic dependence. Its weight was significantly higher (>1.7 times) than wind speed at Qilianyu and Jinqing Island, while wind speed contribution was greater (advantage ratio <1.4) at Ganquan Island and Huaxia Shoal. For multi-step forecasting, “DM + Dual” performed best for short-to-medium terms (1−18 h), whereas “RF + Dual” was superior for long-term forecasts (19−24 h) and at Ganquan Island across all horizons. This study validates BO-LSTM’s effectiveness for wave forecasting in the South China Sea and provides physically interpretable insights for developing regional intelligent forecasting models by linking data-driven patterns with geophysical mechanisms.
-
表 1 波浪观测站信息[22]
Tab. 1 Wave measurement station information
站位 观测仪器 观测时间(年/月) 采样间隔/h 样本量 七连屿站 ADCP 2017/07−2017/11 2 1371 甘泉岛站 浪龙仪 2018/01−2018/04 1 2603 晋卿岛站 浪龙仪 2014/06−2018/06 0.5 32487 华夏暗沙站 ADCP 2018/06−2018/11 2 1506 表 2 各模型预测误差对比
Tab. 2 Error comparison of prediction models
模型 七连屿站 甘泉岛站 晋卿岛站 华夏暗沙站 RMSE/m PCC RMSE/m PCC RMSE/m PCC RMSE/m PCC LR 0.189 0.875 0.115 0.929 0.103 0.885 0.297 0.923 RFR 0.061 0.988 0.030 0.996 0.034 0.989 0.103 0.991 LSTM 0.149 0.927 0.098 0.949 0.098 0.898 0.244 0.949 表 3 最佳时间窗口
Tab. 3 Best time window
站位 测试集
RMSE/m测试集
PCC最佳时间
窗口n输入因数 七连屿站 0.036 0.958 2 历史波高 0.037 0.956 2 历史波高+风速 甘泉岛站 0.042 0.989 1 历史波高 0.042 0.990 1 历史波高+风速 晋卿岛站 0.047 0.977 1 历史波高 0.048 0.976 1 历史波高+风速 华夏暗沙站 0.147 0.988 2 历史波高 0.157 0.986 1 历史波高+风速 表 4 两种输入因素不同站位模型超参数
Tab. 4 Two input factors with different station model hyperparameters
站位 层数 学习率 隐藏层 迭代次数 输入因数 七连屿站 4 0.001 80 143 历史波高 4 0.003 93 132 历史波高+风速 甘泉岛站 3 0.041 73 193 历史波高 2 0.063 75 112 历史波高+风速 晋卿岛站 3 0.041 73 193 历史波高 3 0.041 73 193 历史波高+风速 华夏暗沙站 3 0.041 73 193 历史波高 3 0.041 73 193 历史波高+风速 表 5 最优模型预测结果统计
Tab. 5 Statistics of optimal model prediction results
最优模型 输入因素 七连屿 甘泉岛 晋卿岛 华夏暗沙 RMSE/m PCC RMSE/m PCC RMSE/m PCC RMSE/m PCC 七连屿数据(训练) 单因素 0.066 0.968 0.059 0.978 0.056 0.964 0.177 0.979 双因素 0.066 0.969 0.059 0.980 0.055 0.966 0.183 0.979 甘泉岛数据(训练) 单因素 0.090 0.941 0.046 0.987 0.047 0.975 0.560 0.885 双因素 0.090 0.944 0.044 0.988 0.051 0.974 0.531 0.908 晋卿岛数据(训练) 单因素 0.080 0.953 0.046 0.987 0.046 0.976 0.395 0.950 双因素 0.085 0.948 0.046 0.988 0.046 0.975 0.492 0.926 华夏暗沙数据(训练) 单因素 0.143 0.94 0.102 0.978 0.158 0.931 0.143 0.986 双因素 0.167 0.949 0.121 0.986 0.158 0.969 0.151 0.984 表 6 不同预测法评价指标对比
Tab. 6 Comparison of evaluation metrics among different prediction methods
模型 预报时序/h 七连屿站 甘泉岛站 晋卿岛站 华夏暗沙站 NMAE NRMSE PCC NMAE NRMSE PCC NMAE NRMSE PCC NMAE NRMSE PCC RF+单 1 0.009 0.015 0.968 0.015 0.026 0.987 0.014 0.019 0.975 0.016 0.025 0.984 3 0.012 0.021 0.938 0.028 0.044 0.961 0.018 0.026 0.938 0.025 0.035 0.968 6 0.015 0.027 0.895 0.04 0.062 0.922 0.024 0.035 0.89 0.033 0.046 0.943 12 0.021 0.038 0.779 0.056 0.086 0.846 0.031 0.044 0.811 0.046 0.064 0.889 24 0.029 0.054 0.527 0.076 0.116 0.713 0.04 0.057 0.667 0.066 0.091 0.767 RF+双 1 0.009 0.015 0.969 0.016 0.025 0.988 0.011 0.016 0.977 0.016 0.025 0.984 3 0.012 0.021 0.940 0.028 0.041 0.968 0.018 0.026 0.937 0.026 0.035 0.967 6 0.016 0.027 0.900 0.038 0.054 0.946 0.025 0.035 0.888 0.035 0.046 0.945 12 0.023 0.037 0.795 0.049 0.068 0.919 0.031 0.044 0.818 0.045 0.059 0.906 24 0.032 0.054 0.555 0.061 0.083 0.889 0.038 0.054 0.736 0.055 0.071 0.860 DM+单 1 0.009 0.015 0.968 0.015 0.026 0.987 0.014 0.019 0.975 0.016 0.025 0.984 3 0.013 0.022 0.929 0.028 0.044 0.961 0.018 0.026 0.939 0.025 0.036 0.966 6 0.015 0.027 0.897 0.039 0.061 0.923 0.023 0.034 0.891 0.033 0.046 0.943 12 0.019 0.035 0.813 0.054 0.084 0.852 0.029 0.043 0.823 0.046 0.063 0.891 24 0.027 0.049 0.597 0.074 0.110 0.728 0.037 0.054 0.704 0.064 0.087 0.776 DM+双 1 0.009 0.015 0.969 0.016 0.025 0.988 0.011 0.016 0.977 0.016 0.025 0.984 3 0.014 0.022 0.935 0.027 0.04 0.969 0.018 0.026 0.938 0.024 0.033 0.971 6 0.017 0.026 0.905 0.035 0.052 0.945 0.022 0.032 0.905 0.030 0.040 0.957 12 0.023 0.037 0.8 0.047 0.07 0.898 0.028 0.041 0.842 0.039 0.052 0.926 24 0.030 0.048 0.614 0.065 0.098 0.788 0.036 0.053 0.718 0.054 0.073 0.847 表 7 不同数据集输入因素的模型权重强度对比
Tab. 7 Comparison of model weight intensity of input factors across different datasets
数据集 风速 历史波高 历史波高相对风速
的优势(历史波高
均值/风速均值)平均权
重强度模型间
标准差平均权
重强度模型间
标准差Q站 0.197 0.078 0.339 0.125 1.72 G站 0.188 0.065 0.216 0.103 1.14 J站 0.149 0.052 0.323 0.111 2.17 H站 0.193 0.059 0.262 0.125 1.36 注:平均权重强度指1~24 h预报模型的权重绝对值均值(单模型内先平均,再取24个模型的均值);模型间标准差反映24个模型权重强度的波动程度。 -
[1] Xingjian Shi, Zhourong Chen, Hao Wang, et al. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting[C]// Proceedings of Advances in Neural Information Processing Systems 28. NeurIPS, 2015. doi: 10.1016/j.image.2019.115682 [2] Pradhan R, Aygun R S, Maskey M, et al. Tropical cyclone intensity estimation using a deep convolutional neural network[J]. IEEE Transactions on Image Processing, 2018, 27(2): 692−702. doi: 10.1109/TIP.2017.2766358 [3] Musinguzi A, Akbar M K, Fleming J G, et al. Understanding Hurricane Storm Surge Generation and Propagation Using a Forecasting Model, Forecast Advisories and Best Track in a Wind Model, and Observed Data—Case Study Hurricane Rita[J]. Journal of Marine Science and Engineering, 2019, 7(3): 77. doi: 10.1109/TMM.2018.2867742 [4] Changming Dong, Guangjun Xu, Guoqing Han, et al. Recent Developments in Artificial Intelligence in Oceanography[J]. Ocean-Land-Atmosphere Research, 2022, 2022. doi: 10.1109/TIP.2018.2867740 [5] Deo M C, Sridhar Naidu C. Real time wave forecasting using neural networks[J]. Ocean Engineering, 1998, 26(3): 191−203. doi: 10.1016/S0029-8018(97)10025-7 [6] Mandal S, Prabaharan N. Ocean wave forecasting using recurrent neural networks[J]. Ocean Engineering, 2006, 33(10): 1401−1410. doi: 10.1016/j.oceaneng.2005.08.007 [7] Mahjoobi J, Adeli Mosabbeb E. Prediction of significant wave height using regressive support vector machines[J]. Ocean Engineering, 2009, 36(5): 339−347. doi: 10.1016/j.oceaneng.2009.01.001 [8] Etemad-Shahidi A, Mahjoobi J. Comparison between M5’ model tree and neural networks for prediction of significant wave height in Lake Superior[J]. Ocean Engineering, 2009, 36(15/16): 1175−1181. [9] Dixit P, Londhe S, Dandawate Y. Removing prediction lag in wave height forecasting using Neuro-Wavelet modeling technique[J]. Ocean Engineering, 2015, 93: 74−83. doi: 10.1016/j.oceaneng.2014.10.009 [10] Alexandre E, Cuadra L, Nieto-Borge J C, et al. A hybrid genetic algorithm—extreme learning machine approach for accurate significant wave height reconstruction[J]. Ocean Modelling, 2015, 92: 115−123. doi: 10.1016/j.ocemod.2015.06.010 [11] Kumar N K, Savitha R, Mamun A A. Regional ocean wave height prediction using sequential learning neural networks[J]. Ocean Engineering, 2017, 129: 605−612. doi: 10.1016/j.oceaneng.2016.10.033 [12] Wang Wenxu, Tang Ruichun, Li Cheng, et al. A BP neural network model optimized by Mind Evolutionary Algorithm for predicting the ocean wave heights[J]. Ocean Engineering, 2018, 162: 98−107. doi: 10.1016/j.oceaneng.2018.04.039 [13] Akbarifard S, Radmanesh F. Predicting sea wave height using Symbiotic Organisms Search (SOS) algorithm[J]. Ocean Engineering, 2018, 167: 348−356. doi: 10.1016/j.oceaneng.2018.04.092 [14] Londhe S N, Shah S, Dixit P R, et al. A coupled numerical and artificial neural network model for improving location specific wave forecast[J]. Applied Ocean Research, 2016, 59: 483−491. doi: 10.1016/j.apor.2016.07.004 [15] James S C, Zhang Yushan, O’Donncha F. A machine learning framework to forecast wave conditions[J]. Coastal Engineering, 2018, 137: 1−10. doi: 10.1016/j.coastaleng.2018.03.004 [16] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735−1780. doi: 10.1162/neco.1997.9.8.1735 [17] Fan Shuntao, Xiao Nianhao, Dong Sheng. A novel model to predict significant wave height based on long short-term memory network[J]. Ocean Engineering, 2020, 205: 107298. doi: 10.1016/j.oceaneng.2020.107298 [18] Zhou Shuyi, Xie Wenhong, Lu Yuxiang, et al. ConvLSTM-based wave forecasts in the South and East China Seas[J]. Frontiers in Marine Science, 2021, 8: 680079. doi: 10.3389/fmars.2021.680079 [19] Gao Zhiyi, Liu Xing, Yv Fujiang, et al. Learning wave fields evolution in North West Pacific with deep neural networks[J]. Applied Ocean Research, 2023, 130: 103393. doi: 10.1016/j.apor.2022.103393 [20] 秦知朋, 陈永平, 潘毅, 等. 基于BO-LSTM神经网络模型的台风浪波高预报方法研究[J]. 海洋学报, 2024, 46(10): 107−116.Qin Zhipeng, Chen Yongping, Pan Yi, et al. Research on typhoon wave height prediction method based on BO-LSTM neural network model[J]. Haiyang Xuebao, 2024, 46(10): 107−116. [21] Ris R C, Holthuijsen L H, Booij N. A third-generation wave model for coastal regions: 2. Verification [J]. Journal of Geophysical Research: Oceans, 1999, 104(C4): 7667−7681. [22] 邱立国, 梁小力, 陈斌, 等. 西沙群岛宣德环礁波浪分布特征[J]. 热带海洋学报, 2025, 44(5): 50−64.Qiu Liguo, Liang Xiaoli, Chen Bin, et al. Wave distribution characteristics of Xuande Atoll, Xisha Islands[J]. Journal of Tropical Oceanography, 2025, 44(5): 50−64. [23] Hersbach H, Bell B, Berrisford P, et al. ERA5 hourly data on single levels from 1940 to present[EB/OL]. Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [2024−10−16]. https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview. -
下载: