Numerical investigation on wave attenuation performance of ecological bottom protection with oyster reefs
-
摘要: 本文基于开源计算流体力学平台OpenFOAM的waves2Foam造波工具箱,建立二维数值波浪水槽,模拟不规则波条件下牡蛎礁生态护底的波浪传播特性。采用VoF方法捕捉自由液面,结合k-ω SST湍流模型解析近壁流动与能量耗散过程。通过与物理模型试验数据对比,验证了数值模型在波浪传播特性上的可靠性。在此基础上,系统分析曲率粗糙度系数Cr、入射波高Hs及礁坪水深hr对波浪衰减性能的影响规律。结果表明,粗糙度是控制波浪衰减的关键因素,当Cr>0.2时,不规则波条件下的波浪透射系数较光滑底面降低37%~42%;入射波高增加可显著增强消能效果,而较大的礁坪水深hr则削弱粗糙面的能量耗散作用。研究结果可为牡蛎礁生态护底结构的优化设计及海岸防护工程应用提供量化参考。
-
关键词:
- 牡蛎礁生态护底 /
- 波浪衰减 /
- 数值模拟 /
- OpenFOAM /
- waves2Foam
Abstract: A two-dimensional numerical wave flume was developed using the open-source computational fluid dynamics platform OpenFOAM and its waves2Foam wave generation toolbox to simulate wave propagation over oyster reef ecological bottom protection under both regular and irregular wave conditions. The Volume of Fluid (VoF) method was employed to capture the free surface, while the k-ω SST turbulence model was used to resolve near-wall flow and energy dissipation processes. The model’s reliability in reproducing wave propagation characteristics was verified through comparison with physical model experiments. Parametric analyses were then conducted to examine the effects of curvature-based roughness coefficient (Cr), incident wave height (Hs), and reef flat water depth (hr) on wave attenuation performance. Results show that roughness is the key factor controlling wave dissipation: when Cr > 0.2, the wave transmission coefficient under irregular waves decreases by 37%–42% compared with a smooth bed. Higher incident wave heights markedly enhance energy dissipation, whereas greater reef flat water depth weakens the dissipation effect of the rough surface. These findings provide quantitative guidance for optimizing the design of oyster reef ecological bottom protection structures and their application in coastal defense engineering. -
表 1 波高仪的布置位置
Tab. 1 Arrangement position of the wave height meter
浪高仪编号 在护底上的位置/m 浪高仪编号 在护底上的位置/m WG1 0 WG5 5 WG2 1.3 WG6 6.1 WG3 2.9 WG7 7.2 WG4 4.4 WG8 7.9 表 2 模拟工况
Tab. 2 Simulation conditions
模拟
组次曲率粗糙度
系数Cr入射有效
波高Hs/cm礁坪水深
hr/cm谱峰周期
Tp/sM1 0 10 20、25、30、35、40 2 M2 0.2 10 20、25、30、35、40 2 M3 0.25 10 20、25、30、35、40 2 M4 0.32 10 20、25、30、35、40 2 M5 0.32 6、10、13、15 30 2 -
[1] Spalding M D, Ruffo S, Lacambra C, et al. The role of ecosystems in coastal protection: adapting to climate change and coastal hazards[J]. Ocean & Coastal Management, 2014, 90: 50−57. [2] La Peyre M K, Humphries A T, Casas S M, et al. Temporal variation in development of ecosystem services from oyster reef restoration[J]. Ecological Engineering, 2014, 63: 34−44. [3] Morris R L, Konlechner T M, Ghisalberti M, et al. From grey to green: efficacy of eco-engineering solutions for nature-based coastal defence[J]. Global Change Biology, 2018, 24(5): 1827−1842. doi: 10.1111/gcb.14063 [4] Scyphers S B, Powers S P, Heck K L J, et al. Oyster reefs as natural breakwaters mitigate shoreline loss and facilitate fisheries[J]. PLoS One, 2011, 6(8): e22396. doi: 10.1371/journal.pone.0022396 [5] Meyer D L, Townsend E C, Thayer G W. Stabilization and erosion control value of oyster cultch for intertidal marsh[J]. Restoration Ecology, 1997, 5(1): 93−99. doi: 10.1046/j.1526-100X.1997.09710.x [6] Morris R L, La Peyre M K, Webb B M, et al. Large-scale variation in wave attenuation of oyster reef living shorelines and the influence of inundation duration[J]. Ecological Applications, 2021, 31(6): e02382. doi: 10.1002/eap.2382 [7] Xu Wei, Tao Aifeng, Wang Risheng, et al. Review of wave attenuation by artificial oyster reefs based on experimental analysis[J]. Ocean Engineering, 2024, 298: 117309. doi: 10.1016/j.oceaneng.2024.117309 [8] Norris B K, Storlazzi C D, Pomeroy A W M, et al. Combining field observations and high-resolution numerical modeling to demonstrate the effect of coral reef roughness on turbulence and its implications for reef restoration design[J]. Coastal Engineering, 2023, 184: 104331. doi: 10.1016/j.coastaleng.2023.104331 [9] Liu Weijie, Shao Keqi, Ning Yue, et al. Numerical study of the impact of climate change on irregular wave run-up over reef-fringed coasts[J]. China Ocean Engineering, 2020, 34(2): 162−171. doi: 10.1007/s13344-020-0016-6 [10] Ning Yue, Liu Weijie, Sun Zhilin, et al. Parametric study of solitary wave propagation and runup over fringing reefs based on a Boussinesq wave model[J]. Journal of Marine Science and Technology, 2019, 24(2): 512−525. doi: 10.1007/s00773-018-0571-1 [11] Poupardin A, Heinrich P. Adjusting Manning coefficients to simulate tsunami propagation over porous coral reef[J]. European Journal of Mechanics - B/Fluids, 2025, 109: 131−144. doi: 10.1016/j.euromechflu.2024.09.006 [12] Chen W, Warmink J J, Van Gent M R A, et al. Numerical modelling of wave overtopping at dikes using OpenFOAM®[J]. Coastal Engineering, 2021, 166: 103890. doi: 10.1016/j.coastaleng.2021.103890 [13] Weller H G, Tabor G, Jasak H, et al. A tensorial approach to computational continuum mechanics using object-oriented techniques[J]. Computers in Physics, 1998, 12(6): 620−631. doi: 10.1063/1.168744 [14] Jacobsen N G, Fuhrman D R, Fredsøe J. A wave generation toolbox for the open-source CFD library: OpenFoam®[J]. International Journal for Numerical Methods in Fluids, 2012, 70(9): 1073−1088. doi: 10.1002/fld.2726 [15] Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201−225. doi: 10.1016/0021-9991(81)90145-5 [16] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598−1605. doi: 10.2514/3.12149 [17] Umeyama M. Coupled PIV and PTV measurements of particle velocities and trajectories for surface waves following a steady current[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2011, 137(2): 85−94. doi: 10.1061/(ASCE)WW.1943-5460.0000067 [18] Chen Songtao, Wu Linna, Zhao Weiwen, et al. Development of an improved numerical wave tank for wave-current interaction simulations based on OpenFOAM[C]//Proceedings of the Thirty-third (2023) International Ocean and Polar Engineering Conference. Ottawa: ISOPE, 2023. [19] Zhuang Yuan, Wan Decheng. Parametric study of a new HOS-CFD coupling method[J]. Journal of Hydrodynamics, 2021, 33(1): 43−54. doi: 10.1007/s42241-021-0012-1 [20] 龚政, 刘宇淳, 张茜, 等. 牡蛎礁生态潜堤的消浪效果试验研究[J]. 东南大学学报(自然科学版), 2023, 53(5): 869−875. Gong Zheng, Liu Yuchun, Zhang Qian, et al. Experimental study on the wave attenuation effect of oyster-reef eco-submerged breakwaters[J]. Journal of Southeast University (Natural Science Edition), 2023, 53(5): 869–875. -
下载: