留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

牡蛎礁生态护底波浪衰减特性的数值模拟研究

龚政 李晓宇 靳闯 张茜

龚政,李晓宇,靳闯,等. 牡蛎礁生态护底波浪衰减特性的数值模拟研究[J]. 海洋学报,2025,47(12):94–102 doi: 10.12284/hyxb20250107
引用本文: 龚政,李晓宇,靳闯,等. 牡蛎礁生态护底波浪衰减特性的数值模拟研究[J]. 海洋学报,2025,47(12):94–102 doi: 10.12284/hyxb20250107
Gong Zheng¹,Li Xiaoyu¹,Jin Chuang¹², et al. Numerical investigation on wave attenuation performance of ecological bottom protection with oyster reefs[J]. Haiyang Xuebao,2025, 47(12):94–102 doi: 10.12284/hyxb20250107
Citation: Gong Zheng¹,Li Xiaoyu¹,Jin Chuang¹², et al. Numerical investigation on wave attenuation performance of ecological bottom protection with oyster reefs[J]. Haiyang Xuebao,2025, 47(12):94–102 doi: 10.12284/hyxb20250107

牡蛎礁生态护底波浪衰减特性的数值模拟研究

doi: 10.12284/hyxb20250107
基金项目: 国家重点研发计划项目“典型海岸侵蚀防护与活力海岸构建关键技术”(2022YFC3106204)。
详细信息
    作者简介:

    龚政(1975—),男,江苏省张家港市人,教授,主要从事河口海岸动力学与泥沙运动研究。E-mail:gongzheng@hhu.edu.cn

    通讯作者:

    靳闯,男,副研究员,主要从事海岸动力地貌学研究。E-mail:c.jin@hhu.edu.cn

  • 中图分类号: P753;TV139.2

Numerical investigation on wave attenuation performance of ecological bottom protection with oyster reefs

  • 摘要: 本文基于开源计算流体力学平台OpenFOAM的waves2Foam造波工具箱,建立二维数值波浪水槽,模拟不规则波条件下牡蛎礁生态护底的波浪传播特性。采用VoF方法捕捉自由液面,结合k-ω SST湍流模型解析近壁流动与能量耗散过程。通过与物理模型试验数据对比,验证了数值模型在波浪传播特性上的可靠性。在此基础上,系统分析曲率粗糙度系数Cr、入射波高Hs及礁坪水深hr对波浪衰减性能的影响规律。结果表明,粗糙度是控制波浪衰减的关键因素,当Cr>0.2时,不规则波条件下的波浪透射系数较光滑底面降低37%~42%;入射波高增加可显著增强消能效果,而较大的礁坪水深hr则削弱粗糙面的能量耗散作用。研究结果可为牡蛎礁生态护底结构的优化设计及海岸防护工程应用提供量化参考。
  • 图  1  数值造波方法

    Fig.  1  Numerical wave generation method

    图  2  物理模型试验布置

    Fig.  2  Schematic diagram of the physical experiment setup

    图  3  不同Cr条件下的计算区域

    Fig.  3  Computational domain of different Cr

    图  4  波浪透射系数的模拟与实验值对比

    Fig.  4  Comparison of simulated and experimental values

    图  5  波浪透射系数随传播距离的变化

    Fig.  5  Variation of wave transmission coefficient with propagation distance

    图  6  4个典型相位下湍动能分布

    Fig.  6  Turbulent Kinetic Energy (TKE) distribution at four representative wave phases

    图  7  不同入射波高条件下波浪透射系数随传播距离的变化

    Fig.  7  Variation of wave transmission coefficient with propagation distance under different incident wave heights

    图  8  牡蛎礁粗糙结构在4个典型相位下的壁面剪应力的瞬时分布

    Fig.  8  Instantaneous distribution of wall shear stress over the oyster reef bottom at four wave phases

    图  9  不同相对礁坪水深下波浪透射系数沿程变化

    Fig.  9  Variation of wave transmission coefficient Hx/Hi under different reef flat water depth hr/H

    图  10  曲率粗糙度系数 Cr 与相对礁坪水深hr/H 对波浪透射系数 Kt 的耦合作用

    Fig.  10  Combined effects of curvature-based roughness Cr and hr/H on the transmitted wave coefficient Kt

    表  1  波高仪的布置位置

    Tab.  1  Arrangement position of the wave height meter

    浪高仪编号 在护底上的位置/m 浪高仪编号 在护底上的位置/m
    WG1 0 WG5 5
    WG2 1.3 WG6 6.1
    WG3 2.9 WG7 7.2
    WG4 4.4 WG8 7.9
    下载: 导出CSV

    表  2  模拟工况

    Tab.  2  Simulation conditions

    模拟
    组次
    曲率粗糙度
    系数Cr
    入射有效
    波高Hs/cm
    礁坪水深
    hr/cm
    谱峰周期
    Tp/s
    M1 0 10 20、25、30、35、40 2
    M2 0.2 10 20、25、30、35、40 2
    M3 0.25 10 20、25、30、35、40 2
    M4 0.32 10 20、25、30、35、40 2
    M5 0.32 6、10、13、15 30 2
    下载: 导出CSV
  • [1] Spalding M D, Ruffo S, Lacambra C, et al. The role of ecosystems in coastal protection: adapting to climate change and coastal hazards[J]. Ocean & Coastal Management, 2014, 90: 50−57.
    [2] La Peyre M K, Humphries A T, Casas S M, et al. Temporal variation in development of ecosystem services from oyster reef restoration[J]. Ecological Engineering, 2014, 63: 34−44.
    [3] Morris R L, Konlechner T M, Ghisalberti M, et al. From grey to green: efficacy of eco-engineering solutions for nature-based coastal defence[J]. Global Change Biology, 2018, 24(5): 1827−1842. doi: 10.1111/gcb.14063
    [4] Scyphers S B, Powers S P, Heck K L J, et al. Oyster reefs as natural breakwaters mitigate shoreline loss and facilitate fisheries[J]. PLoS One, 2011, 6(8): e22396. doi: 10.1371/journal.pone.0022396
    [5] Meyer D L, Townsend E C, Thayer G W. Stabilization and erosion control value of oyster cultch for intertidal marsh[J]. Restoration Ecology, 1997, 5(1): 93−99. doi: 10.1046/j.1526-100X.1997.09710.x
    [6] Morris R L, La Peyre M K, Webb B M, et al. Large-scale variation in wave attenuation of oyster reef living shorelines and the influence of inundation duration[J]. Ecological Applications, 2021, 31(6): e02382. doi: 10.1002/eap.2382
    [7] Xu Wei, Tao Aifeng, Wang Risheng, et al. Review of wave attenuation by artificial oyster reefs based on experimental analysis[J]. Ocean Engineering, 2024, 298: 117309. doi: 10.1016/j.oceaneng.2024.117309
    [8] Norris B K, Storlazzi C D, Pomeroy A W M, et al. Combining field observations and high-resolution numerical modeling to demonstrate the effect of coral reef roughness on turbulence and its implications for reef restoration design[J]. Coastal Engineering, 2023, 184: 104331. doi: 10.1016/j.coastaleng.2023.104331
    [9] Liu Weijie, Shao Keqi, Ning Yue, et al. Numerical study of the impact of climate change on irregular wave run-up over reef-fringed coasts[J]. China Ocean Engineering, 2020, 34(2): 162−171. doi: 10.1007/s13344-020-0016-6
    [10] Ning Yue, Liu Weijie, Sun Zhilin, et al. Parametric study of solitary wave propagation and runup over fringing reefs based on a Boussinesq wave model[J]. Journal of Marine Science and Technology, 2019, 24(2): 512−525. doi: 10.1007/s00773-018-0571-1
    [11] Poupardin A, Heinrich P. Adjusting Manning coefficients to simulate tsunami propagation over porous coral reef[J]. European Journal of Mechanics - B/Fluids, 2025, 109: 131−144. doi: 10.1016/j.euromechflu.2024.09.006
    [12] Chen W, Warmink J J, Van Gent M R A, et al. Numerical modelling of wave overtopping at dikes using OpenFOAM®[J]. Coastal Engineering, 2021, 166: 103890. doi: 10.1016/j.coastaleng.2021.103890
    [13] Weller H G, Tabor G, Jasak H, et al. A tensorial approach to computational continuum mechanics using object-oriented techniques[J]. Computers in Physics, 1998, 12(6): 620−631. doi: 10.1063/1.168744
    [14] Jacobsen N G, Fuhrman D R, Fredsøe J. A wave generation toolbox for the open-source CFD library: OpenFoam®[J]. International Journal for Numerical Methods in Fluids, 2012, 70(9): 1073−1088. doi: 10.1002/fld.2726
    [15] Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201−225. doi: 10.1016/0021-9991(81)90145-5
    [16] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598−1605. doi: 10.2514/3.12149
    [17] Umeyama M. Coupled PIV and PTV measurements of particle velocities and trajectories for surface waves following a steady current[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2011, 137(2): 85−94. doi: 10.1061/(ASCE)WW.1943-5460.0000067
    [18] Chen Songtao, Wu Linna, Zhao Weiwen, et al. Development of an improved numerical wave tank for wave-current interaction simulations based on OpenFOAM[C]//Proceedings of the Thirty-third (2023) International Ocean and Polar Engineering Conference. Ottawa: ISOPE, 2023.
    [19] Zhuang Yuan, Wan Decheng. Parametric study of a new HOS-CFD coupling method[J]. Journal of Hydrodynamics, 2021, 33(1): 43−54. doi: 10.1007/s42241-021-0012-1
    [20] 龚政, 刘宇淳, 张茜, 等. 牡蛎礁生态潜堤的消浪效果试验研究[J]. 东南大学学报(自然科学版), 2023, 53(5): 869−875.

    Gong Zheng, Liu Yuchun, Zhang Qian, et al. Experimental study on the wave attenuation effect of oyster-reef eco-submerged breakwaters[J]. Journal of Southeast University (Natural Science Edition), 2023, 53(5): 869–875.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  199
  • HTML全文浏览量:  70
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-18
  • 修回日期:  2025-11-05
  • 网络出版日期:  2025-11-14
  • 刊出日期:  2025-12-31

目录

    /

    返回文章
    返回