An introduction to the subsurface velocity maximum structure of the tropical Indo-Pacific interoceanic water exchange
-
摘要: 热带印太洋际交换是大洋热盐环流和全球气候系统的关键环节,是海洋和气候领域的研究热点。观测结果显示,洋际交换具有显著的垂向结构,其流速极大值发生在次表层而不是表层。现有研究对洋际交换垂向结构的维持及变异机制认识不足,也忽视了其对气候的影响。基于自主潜标观测,我们发现源于太平洋西边界流的次表层极大值特征能够进入南海和印尼海并在洋际交换过程中稳定存在,并提出洋际交换海域巨大的淡水和热量通量,以及赤道长波动力过程是洋际交换次表层极大值维持和变异的关键机制这一科学假设。基于上述发现和科学假设,本文梳理了洋际交换次表层极大值的研究现状和存在问题,规划了以观测事实为依据,结合数值模式和理论分析开展洋际交换次表层流速极大值及其气候效应研究的基本思路。研究成果对深入理解热带太平洋−印度洋跨洋盆相互作用和海气相互作用有重要意义,将为提升海洋和气候预测能力提供理论支撑。Abstract: The tropical Indo-Pacific interocean water exchange, which serves as a critical link in the oceanic thermohaline circulation and the global climate system, is one of the most hotspot oceanography and climate science. Previous observation show that the interocean exchange exhibits a distinct vertical structure, with its subsurface velocity maximum (SVM) occurring in the subsurface layer rather than the surface layer. However, existing studies have insufficient understanding of the variability of this structure as well as the underlying mechanisms. Meanwhile, the impact of SVM induced heat and freshwater transport on the Indo-Pacific climate is unclear. Based on mooring observed sea water velocity profiles, we have identified that the SVM characteristics originating from the Pacific Western Boundary Currents can propagate into the South China Sea and the Indonesian Seas, and persist along the main route of the Indonesian Throughflow from Makassar to the Lombok Strait. We propose the scientific hypothesis that the substantial freshwater and heat fluxes in the Maritime Continent, along with the propagation of equatorial planetary wave, are the key mechanisms governing the maintenance and variability of the SVM in interoceanic exchange. Here, we tried to propose an approach to investigate the SVM and its climate effect, based on observations, numerical simulations, and theoretical analyses. The research outcomes are of great significance for deepening the understanding of the interactions between the tropical Pacific and Indian Oceans, as well as air-sea interactions, and will provide theoretical support for enhancing the predictability of the Indo-Pacific climate system.
-
图 2 基于潜标观测的印尼贯穿流主流次表层流速极大值现象
a. 印尼贯穿流主流示意图及潜标站位(五角星);b–d. 望加锡海峡(北)、望加锡海峡(南)、龙目海峡沿海峡流速剖面的周年变化;e–g. 望加锡海峡(北)、望加锡海峡(南)、龙目海峡的年平均沿海峡流速剖面。流速正值表示海流方向向北
Fig. 2 Mooring observed subsurface velocity maximum structure along the main route of the Indonesian Throughflow.
a. Main route of the Indonesian Throughflow and mooring sites (pentagrams); b–d. annual cycle of the along strait velocity profiles in the Northern Makassar Strait, Southern Makassar Strait, and Lombok Strait; e–g. Annual mean of the along strait velocity profiles in the Northern Makassar Strait, Southern Makassar Strait, and Lombok Strait. The velocity positive values indicating northward flow
-
[1] Sprintall J, Gordon A L, Wijffels S E, et al. Detecting change in the Indonesian seas[J]. Frontiers in Marine Science, 2019, 6: 257. doi: 10.3389/fmars.2019.00257 [2] Gordon A L. Oceanography of the Indonesian seas and their throughflow[J]. Oceanography, 2005, 18(4): 14−27. doi: 10.5670/oceanog.2005.01 [3] 吴国雄, 李建平, 周天军, 等. 影响我国短期气候异常的关键区: 亚印太交汇区[J]. 地球科学进展, 2006, 21(11): 1109−1118.Wu Guoxiong, Li Jianping, Zhou Tianjun, et al. The key region affecting the short-term climate variations in China: the joining area of Asia and Indian-Pacific Ocean[J]. Advances in Earth Science, 2006, 21(11): 1109−1118. [4] Broecker W S. The great ocean conveyor[J]. Oceanography, 1991, 4(2): 79−89. doi: 10.5670/oceanog.1991.07 [5] Abram N J, Wright N M, Ellis B, et al. Coupling of Indo-Pacific climate variability over the last millennium[J]. Nature, 2020, 579(7799): 385−392. doi: 10.1038/s41586-020-2084-4 [6] 魏泽勋, 徐腾飞, 方越, 等. 热带太平洋−印度洋洋际交换及其气候效应的观测研究[J]. 地球科学进展, 2024, 39(8): 788−800.Wei Zexun, Xu Tengfei, Fang Yue, et al. Observational research on the inter-ocean exchange between the tropical Pacific and Indian oceans and its climatic effect[J]. Advances in Earth Science, 2024, 39(8): 788−800. [7] McFadden C S, Gonzalez A, Imada R, et al. Molecular operational taxonomic units reveal restricted geographic ranges and regional endemism in the Indo-Pacific octocoral family Xeniidae[J]. Journal of Biogeography, 2019, 46(5): 992−1006. doi: 10.1111/jbi.13543 [8] Dietzel A, Bode M, Connolly S R, et al. The population sizes and global extinction risk of reef-building coral species at biogeographic scales[J]. Nature Ecology & Evolution, 2021, 5(5): 663−669. [9] Pember B M, Chaplin J A, Loneragan N R, et al. Population genetic structure of Indo-West Pacific carcharhinid sharks: what do we know and where to from here?[J]. Pacific Conservation Biology, 2020, 26(4): 319−337. doi: 10.1071/PC19046 [10] Du Yan, Wang Fan, Wang Tianyu, et al. Multi-scale ocean dynamical processes in the Indo-Pacific Convergence Zone and their climatic and ecological effects[J]. Earth-Science Reviews, 2023, 237: 104313. doi: 10.1016/j.earscirev.2023.104313 [11] Wyrtki K. Physical oceanography of the Southeast Asian waters[R]. La Jolla: University of California, Scripps Institution of Oceanography, 1961. [12] Gordon A L. Interocean exchange of thermocline water[J]. Journal of Geophysical Research: Oceans, 1986, 91(C4): 5037−5046. doi: 10.1029/JC091iC04p05037 [13] Wyrtki K. Indonesian through flow and the associated pressure gradient[J]. Journal of Geophysical Research: Oceans, 1987, 92(C12): 12941−12946. doi: 10.1029/JC092iC12p12941 [14] Gordon A L, Susanto R D, Ffield A, et al. Makassar Strait throughflow, 2004 to 2006[J]. Geophysical Research Letters, 2008, 35(24): L24605. [15] Gordon A L, Sprintall J, Van Aken H M, et al. The Indonesian Throughflow during 2004−2006 as observed by the INSTANT program[J]. Dynamics of Atmospheres and Oceans, 2010, 50(2): 115−128. doi: 10.1016/j.dynatmoce.2009.12.002 [16] Gordon A L, Napitu A, Huber B A, et al. Makassar Strait throughflow seasonal and interannual variability: an overview[J]. Journal of Geophysical Research: Oceans, 2019, 124(6): 3724−3736. doi: 10.1029/2018JC014502 [17] Xu Tengfei, Wei Zexun, Zhao Haifeng, et al. Simulated Indonesian Throughflow in Makassar Strait across the SODA3 products[J]. Acta Oceanologica Sinica, 2024, 43(1): 80−98. doi: 10.1007/s13131-023-2186-6 [18] 俞永强, 周祖翼, 张学洪. 印度尼西亚海道关闭对气候的影响: 一个数值模拟研究[J]. 科学通报, 2003, 48(S2): 60−64.Yu Yongqiang, Zhou Zuyi, Zhang Xuehong. Impact of the closure of Indonesian seaway on climate: a numerical modeling study[J]. Chinese Science Bulletin, 2003, 48(S2): 88−93. [19] Sprintall J, Gordon A L, Koch-Larrouy A, et al. The Indonesian seas and their role in the coupled ocean-climate system[J]. Nature Geoscience, 2014, 7(7): 487−492. doi: 10.1038/ngeo2188 [20] 杜岩, 方国洪. 印度尼西亚海与印度尼西亚贯穿流研究概述[J]. 地球科学进展, 2011, 26(11): 1131−1142.Du Yan, Fang Guohong. Progress on the study of the Indonesian seas and Indonesian Throughflow[J]. Advances in Earth Science, 2011, 26(11): 1131−1142. [21] 袁东亮, 周慧, 王铮, 等. 印尼贯穿流源区环流的多尺度变异及其科学重要性[J]. 海洋与湖沼, 2017, 48(6): 1156−1168.Yuan Dongliang, Zhou Hui, Wang Zheng, et al. The multi-scale variability of the oceancirculation at the Pacific entrance of the Indonesian Throughflow and its scientific importance[J]. Oceanologia et Limnologia Sinica, 2017, 48(6): 1156−1168. [22] Yuan Dongliang, Li Xiang, Wang Zheng, et al. Observed transport variations in the Maluku channel of the Indonesian seas associated with western boundary current changes[J]. Journal of Physical Oceanography, 2018, 48(8): 1803−1813. doi: 10.1175/JPO-D-17-0120.1 [23] Yuan Dongliang, Yin Xueli, Li Xiang, et al. A Maluku Sea intermediate western boundary current connecting Pacific Ocean circulation to the Indonesian Throughflow[J]. Nature Communications, 2022, 13(1): 2093. doi: 10.1038/s41467-022-29617-6 [24] 方国洪, 魏泽勋. 太平洋−印度洋贯穿流南海分支及其南海海洋学意义[C]//2002热带海洋环境和气候变化研讨会论文摘要集. 广州: 中国科学院南海海洋研究所, 2002: 2−4.Fang Guohong, Wei Zexun. The South China Sea branch of the throughflow from Pacific to Indian Ocean and its oceanography significance in the South China Sea[C]//Collection of the Tropical Marine Environment and Climate Change Symposium 2002. Guangzhou: South China Sea Institute of Oceanology, Chinese Academy of Sciences, 2002: 2−4. [25] Fang Guohong, Susanto D, Soesilo I, et al. A note on the South China Sea shallow interocean circulation[J]. Advances in Atmospheric Sciences, 2005, 22(6): 946−954. doi: 10.1007/BF02918693 [26] Wang Dongxiao, Liu Qinyan, Huang Ruixin, et al. Interannual variability of the South China Sea throughflow inferred from wind data and an ocean data assimilation product[J]. Geophysical Research Letters, 2006, 33(14): L14605. [27] Qu Tangdong, Song Y T, Yamagata T. An introduction to the South China Sea throughflow: its dynamics, variability, and application for climate[J]. Dynamics of Atmospheres and Oceans, 2009, 47(1/3): 3−14. [28] Fang Guohong, Wang Yonggang, Wei Zexun, et al. Interocean circulation and heat and freshwater budgets of the South China Sea based on a numerical model[J]. Dynamics of Atmospheres and Oceans, 2009, 47(1/3): 55−72. [29] He Zhigang, Feng Ming, Wang Dongxiao, et al. Contribution of the Karimata Strait transport to the Indonesian Throughflow as seen from a data assimilation model[J]. Continental Shelf Research, 2015, 92: 16−22. doi: 10.1016/j.csr.2014.10.007 [30] Gordon A L. When is appearance reality? A comment on why does the Indonesian Throughflow appear to originate from the North Pacific[J]. Journal of Physical Oceanography, 1995, 25(6): 1560−1567. doi: 10.1175/1520-0485(1995)025<1560:WIARAC>2.0.CO;2 [31] Qu Tangdong, Du Yan, Meyers G, et al. Connecting the tropical Pacific with Indian Ocean through South China Sea[J]. Geophysical Research Letters, 2005, 32(24): L24609. [32] Sprintall J, Gordon A L, Flament P, et al. Observations of exchange between the South China Sea and the Sulu Sea[J]. Journal of Geophysical Research: Oceans, 2012, 117(C5): C05036. [33] Koch-Larrouy A, Madec G, Bouruet-Aubertot P, et al. On the transformation of Pacific Water into Indonesian Throughflow Water by internal tidal mixing[J]. Geophysical Research Letters, 2007, 34(4): L04604. [34] van Sebille E, Sprintall J, Schwarzkopf F U, et al. Pacific-to-Indian Ocean connectivity: Tasman leakage, Indonesian Throughflow, and the role of ENSO[J]. Journal of Geophysical Research: Oceans, 2014, 119(2): 1365−1382. doi: 10.1002/2013JC009525 [35] Yang Lina, Zhou Lei, Li Shujiang, et al. Spreading of the South Pacific tropical water and Antarctic Intermediate Water over the Maritime Continent[J]. Journal of Geophysical Research: Oceans, 2018, 123(6): 4423−4446. doi: 10.1029/2018JC013831 [36] Valsala V K, Ikeda M. Pathways and effects of the Indonesian Throughflow water in the Indian Ocean using particle trajectory and tracers in an OGCM[J]. Journal of Climate, 2007, 20(13): 2994−3017. doi: 10.1175/JCLI4167.1 [37] Durgadoo J V, Rühs S, Biastoch A, et al. Indian Ocean sources of Agulhas leakage[J]. Journal of Geophysical Research: Oceans, 2017, 122(4): 3481−3499. doi: 10.1002/2016JC012676 [38] Guo Yaru, Li Yuanlong, Wang Fan. Destinations and pathways of the Indonesian Throughflow water in the Indian Ocean[J]. Journal of Climate, 2023, 36(11): 3717−3735. doi: 10.1175/JCLI-D-22-0631.1 [39] Li Shihan, Hu Shijian, Song Xiangzhou. Observed subsurface marine heatwaves driven by subsurface eddies in the western tropical Pacific Ocean[J]. Geophysical Research Letters, 2025, 52(10): e2025GL115039. doi: 10.1029/2025GL115039 [40] Kim J, Na Hanna, Park Y G, et al. Potential predictability of skipjack tuna (Katsuwonus pelamis) catches in the western Central Pacific[J]. Scientific Reports, 2020, 10(1): 3193. doi: 10.1038/s41598-020-59947-8 [41] Beal L M, Vialard J, Roxy M K, et al. A road map to IndOOS-2: better observations of the rapidly warming Indian Ocean[J]. Bulletin of the American Meteorological Society, 2020, 101(11): E1891−E1913. doi: 10.1175/BAMS-D-19-0209.1 [42] Ummenhofer C C, Murty S A, Sprintall J, et al. Heat and freshwater changes in the Indian Ocean region[J]. Nature Reviews Earth & Environment, 2021, 2: 525−541. [43] Chen Gengxin, Han Weiqing, Ma Xueying, et al. Role of extreme Indian Ocean dipole in regulating three-dimensional freshwater content in the Southeast Indian Ocean[J]. Geophysical Research Letters, 2023, 50(4): e2022GL102290. doi: 10.1029/2022GL102290 [44] Lee S K, Park W, Baringer M O, et al. Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus[J]. Nature Geoscience, 2015, 8(6): 445−449. doi: 10.1038/ngeo2438 [45] Nie Xunwei, Wei Zexun, Li Ying. Decadal variability in salinity of the Indian Ocean Subtropical Underwater during the Argo period[J]. Geophysical Research Letters, 2020, 47(22): e2020GL089104. doi: 10.1029/2020GL089104 [46] Soumya M. Role of Indonesian throughflow on Indian Ocean warming pattern formation during the recent global warming hiatus in CMIP6 models[J]. Global and Planetary Change, 2025, 253: 104969. doi: 10.1016/j.gloplacha.2025.104969 [47] Ayers J M, Strutton P G, Coles V J, et al. Indonesian throughflow nutrient fluxes and their potential impact on Indian Ocean productivity[J]. Geophysical Research Letters, 2014, 41(14): 5060−5067. doi: 10.1002/2014GL060593 [48] Du Yan, Zhang Yuhong, Zhang Lianyi, et al. Thermocline warming induced extreme Indian Ocean Dipole in 2019[J]. Geophysical Research Letters, 2020, 47(18): e2020GL090079. doi: 10.1029/2020GL090079 [49] Sprintall J, Wijffels S E, Molcard R, et al. Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004−2006[J]. Journal of Geophysical Research: Oceans, 2009, 114(C7): C07001. [50] Susanto R D, Ffield A, Gordon A L, et al. Variability of Indonesian throughflow within Makassar Strait, 2004−2009[J]. Journal of Geophysical Research: Oceans, 2012, 117(C9): 2012JC008096. doi: 10.1029/2012JC008096 [51] Li Mingting, Yuan Dongliang, Gordon A L, et al. A strong sub-thermocline intrusion of the North Equatorial Subsurface Current into the Makassar Strait in 2016−2017[J]. Geophysical Research Letters, 2021, 48(8): e2021GL092505. doi: 10.1029/2021GL092505 [52] Yang Ya, Li Xiang, Wang Jing, et al. Seasonal variability and dynamics of the Pacific North Equatorial Subsurface Current[J]. Journal of Physical Oceanography, 2020, 50(9): 2457−2474. doi: 10.1175/JPO-D-19-0261.1 [53] Wang Jing, Yuan Dongliang, Li Xiang, et al. Moored observations of the Savu Strait currents in the Indonesian seas[J]. Journal of Geophysical Research: Oceans, 2020, 125(7): e2020JC016082. doi: 10.1029/2020JC016082 [54] Sprintall J, Wijffels S, Molcard R, et al. Direct evidence of the South Java Current system in Ombai Strait[J]. Dynamics of Atmospheres and Oceans, 2010, 50(2): 140−156. doi: 10.1016/j.dynatmoce.2010.02.006 [55] Li Mingting, Cao Ziyang, Gordon A L, et al. Roles of the Indo-Pacific subsurface Kelvin waves and volume transport in prolonging the triple-dip 2020−2023 La Niña[J]. Environmental Research Letters, 2023, 18(10): 104043. doi: 10.1088/1748-9326/acfcce [56] Potemra J T, Schneider N. Interannual variations of the Indonesian throughflow[J]. Journal of Geophysical Research: Oceans, 2007, 112(C5): C05035. [57] Godfrey J S. A Sverdrup model of the depth-integrated flow for the world ocean allowing for island circulations[J]. Geophysical & Astrophysical Fluid Dynamics, 1989, 45(1/2): 89−112. [58] Wijffels S, Meyers G. An intersection of oceanic waveguides: variability in the Indonesian Throughflow region[J]. Journal of Physical Oceanography, 2004, 34(5): 1232−1253. doi: 10.1175/1520-0485(2004)034<1232:AIOOWV>2.0.CO;2 [59] Yuan Dongliang, Wang Jing, Xu Tengfei, et al. Forcing of the Indian Ocean dipole on the interannual variations of the tropical Pacific Ocean: roles of the Indonesian Throughflow[J]. Journal of Climate, 2011, 24(14): 3593−3608. doi: 10.1175/2011JCLI3649.1 [60] Yang Yingyi, Xu Tengfei, Wei Zexun, et al. Interannual variability of surface Indonesian Throughflow and its relationships with Pacific and Indian Oceans derived from satellite observation[J]. Acta Oceanologica Sinica, 2025, 44(1): 1−16. doi: 10.1007/s13131-024-2396-6 [61] Feng Ming, Böning C, Biastoch A, et al. The reversal of the multi-decadal trends of the equatorial Pacific easterly winds, and the Indonesian Throughflow and Leeuwin Current transports[J]. Geophysical Research Letters, 2011, 38(11): L11604. [62] Feng Ming, Zhang Ningning, Liu Qinyan, et al. The Indonesian throughflow, its variability and centennial change[J]. Geoscience Letters, 2018, 5(1): 3. doi: 10.1186/s40562-018-0102-2 [63] Li Mingting, Gordon A L, Wei Jun, et al. Multi-decadal timeseries of the Indonesian throughflow[J]. Dynamics of Atmospheres and Oceans, 2018, 81: 84−95. doi: 10.1016/j.dynatmoce.2018.02.001 [64] Tillinger D, Gordon A L. Fifty years of the Indonesian Throughflow[J]. Journal of Climate, 2009, 22(23): 6342−6355. doi: 10.1175/2009JCLI2981.1 [65] Hu Shijian, Sprintall J. Interannual variability of the Indonesian Throughflow: the salinity effect[J]. Journal of Geophysical Research: Oceans, 2016, 121(4): 2596−2615. doi: 10.1002/2015JC011495 [66] Hu Shijian, Sprintall J. Observed strengthening of interbasin exchange via the Indonesian seas due to rainfall intensification[J]. Geophysical Research Letters, 2017, 44(3): 1448−1456. doi: 10.1002/2016GL072494 [67] Jiang Guoqing, Wei Jun, Malanotte-Rizzoli P, et al. Seasonal and interannual variability of the subsurface velocity profile of the Indonesian Throughflow at Makassar Strait[J]. Journal of Geophysical Research: Oceans, 2019, 124(12): 9644−9657. doi: 10.1029/2018JC014884 [68] Li Mingting, Gordon A L, Gruenburg L K, et al. Interannual to decadal response of the Indonesian Throughflow vertical profile to indo-pacific forcing[J]. Geophysical Research Letters, 2020, 47(11): e2020GL087679. doi: 10.1029/2020GL087679 [69] Pujiana K, McPhaden M J, Gordon A L, et al. Unprecedented response of Indonesian Throughflow to anomalous Indo-Pacific climatic forcing in 2016[J]. Journal of Geophysical Research: Oceans, 2019, 124(6): 3737−3754. doi: 10.1029/2018JC014574 [70] Gordon A L, Susanto R D, Vranes K. Cool Indonesian throughflow as a consequence of restricted surface layer flow[J]. Nature, 2003, 425(6960): 824−828. doi: 10.1038/nature02038 [71] Gordon A L, Huber B A, Metzger E J, et al. South China Sea throughflow impact on the Indonesian throughflow[J]. Geophysical Research Letters, 2012, 39(11): 2012GL052021. doi: 10.1029/2012GL052021 [72] Wang Yan, Xu Tengfei, Li Shujiang, et al. Seasonal variation of water transport through the Karimata Strait[J]. Acta Oceanologica Sinica, 2019, 38(4): 47−57. doi: 10.1007/s13131-018-1224-2 [73] Xu Tengfei, Wei Zexun, Susanto R D, et al. Observed water exchange between the South China Sea and Java Sea through Karimata Strait[J]. Journal of Geophysical Research: Oceans, 2021, 126(2): e2020JC016608. doi: 10.1029/2020JC016608 [74] Tozuka T, Qu Tangdong, Yamagata T. Dramatic impact of the South China Sea on the Indonesian Throughflow[J]. Geophysical Research Letters, 2007, 34(12): L12612. [75] Li Mingting, Wei Jun, Wang Dongxiao, et al. Exploring the importance of the Mindoro-Sibutu pathway to the upper-layer circulation of the South China Sea and the Indonesian throughflow[J]. Journal of Geophysical Research: Oceans, 2019, 124(7): 5054−5066. doi: 10.1029/2018JC014910 [76] 蔡忠瑞, 魏泽勋, 何志伟, 等. 基于盐度松弛试验的南海贯穿流对印尼贯穿流的影响研究[J]. 海洋学报, 2025, 47(8): 1−17.Cai Zhongrui, Wei Zexun, He Zhiwei, et al. Influence of SCSTF on ITF based on numerical sensitivity experiments of salinity relaxation scheme[J]. Haiyang Xuebao, 2025, 47(8): 1−17. [77] Lee T, Fournier S, Gordon A L, et al. Maritime Continent water cycle regulates low-latitude chokepoint of global ocean circulation[J]. Nature Communications, 2019, 10(1): 2103. doi: 10.1038/s41467-019-10109-z [78] Wei Zexun, Li Shujiang, Susanto R D, et al. An overview of 10-year observation of the South China Sea branch of the Pacific to Indian Ocean Throughflow at the Karimata Strait[J]. Acta Oceanologica Sinica, 2019, 38(4): 1−11. doi: 10.1007/s13131-019-1410-x [79] Zhang Linlin, Hu Dunxin, Hu Shijian, et al. Mindanao current/undercurrent measured by a subsurface mooring[J]. Journal of Geophysical Research: Oceans, 2014, 119(6): 3617−3628. doi: 10.1002/2013JC009693 [80] Fang Guohong, Susanto R D, Wirasantosa S, et al. Volume, heat, and freshwater transports from the South China Sea to Indonesian seas in the boreal winter of 2007−2008[J]. Journal of Geophysical Research: Oceans, 2010, 115(C12): C12020. [81] Wei Jun, Li Mingting, Malanotte-Rizzoli P, et al. Opposite variability of Indonesian Throughflow and South China Sea Throughflow in the Sulawesi Sea[J]. Journal of Physical Oceanography, 2016, 46(10): 3165−3180. doi: 10.1175/JPO-D-16-0132.1 [82] Lu Xi, Hu Shijian, Guan Cong, et al. Quantifying the contribution of salinity effect to the seasonal variability of the Makassar Strait throughflow[J]. Geophysical Research Letters, 2023, 50(21): e2023GL105991. doi: 10.1029/2023GL105991 [83] Kida S, Richards K J, Sasaki H. The fate of surface freshwater entering the Indonesian Seas[J]. Journal of Geophysical Research: Oceans, 2019, 124(5): 3228−3245. doi: 10.1029/2018JC014707 [84] Andersson H C, Stigebrandt A. Regulation of the Indonesian Throughflow by baroclinic draining of the North Australian Basin[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2005, 52(12): 2214−2233. doi: 10.1016/j.dsr.2005.06.014 [85] Guo Yaru, Li Yuanlong, Cheng Lijing, et al. An updated estimate of the Indonesian Throughflow geostrophic transport: interannual variability and salinity effect[J]. Geophysical Research Letters, 2023, 50(13): e2023GL103748. doi: 10.1029/2023GL103748 [86] Lu Xi, Hu Shijian, Sprintall J. The role of precipitation and salinity effect in multidecadal changes and long-term trend of the Indonesian Throughflow[J]. Journal of Climate, 2024, 37(4): 1317−1331. doi: 10.1175/JCLI-D-23-0248.1 [87] Kashino Y, Ishida A, Kuroda Y. Variability of the Mindanao Current: mooring observation results[J]. Geophysical Research Letters, 2005, 32(18): L18611. [88] Schönau M C, Rudnick D L. Mindanao Current and Undercurrent: thermohaline structure and transport from repeat glider observations[J]. Journal of Physical Oceanography, 2017, 47(8): 2055−2075. doi: 10.1175/JPO-D-16-0274.1 [89] Kashino Y, Atmadipoera A, Kuroda Y, et al. Observed features of the Halmahera and Mindanao Eddies[J]. Journal of Geophysical Research: Oceans, 2013, 118(12): 6543−6560. doi: 10.1002/2013JC009207 [90] Kashino Y, Ueki I, Sasaki H. Ocean variability east of Mindanao: mooring observations at 7°N, revisited[J]. Journal of Geophysical Research: Oceans, 2015, 120(4): 2540−2554. doi: 10.1002/2015JC010703 [91] Wang Qiang, Zeng Lili, Shu Yeqiang, et al. Interannual variability of South China Sea winter circulation: response to Luzon Strait transport and El Niño wind[J]. Climate Dynamics, 2020, 54(1): 1145−1159. [92] Zhang Peijun, Wang Qiang, Ma Libin. Impact of nonlinear processes on formation of the Kuroshio large meander path in a barotropic inflow-outflow model[J]. Chinese Journal of Oceanology and Limnology, 2015, 33(1): 252−261. doi: 10.1007/s00343-014-3285-1 [93] England M H, Huang Fei. On the interannual variability of the Indonesian Throughflow and its linkage with ENSO[J]. Journal of Climate, 2005, 18(9): 1435−1444. doi: 10.1175/JCLI3322.1 [94] Sprintall J, Révelard A. The Indonesian Throughflow response to Indo-Pacific climate variability[J]. Journal of Geophysical Research: Oceans, 2014, 119(2): 1161−1175. doi: 10.1002/2013JC009533 [95] Wang Zheng, Yuan Dongliang. Multiple equilibria and hysteresis of two unequal-transport western boundary currents colliding at a gap[J]. Journal of Physical Oceanography, 2014, 44(7): 1873−1885. doi: 10.1175/JPO-D-13-0234.1 [96] Hu Xiaoyue, Sprintall J, Yuan Dongliang, et al. Interannual variability of the Sulawesi Sea circulation forced by indo-pacific planetary waves[J]. Journal of Geophysical Research: Oceans, 2019, 124(3): 1616−1633. doi: 10.1029/2018JC014356 [97] Hu Xiaoyue, Xue Huijie, Liang Linlin. Impact of ENSO on the entrance of the Indonesian Throughflow: the oceanic wave propagation[J]. Journal of Geophysical Research: Oceans, 2022, 127(12): e2022JC018782. doi: 10.1029/2022JC018782 [98] Yuan Dongliang, Zhou Hui, Zhao Xia. Interannual climate variability over the tropical pacific ocean induced by the Indian Ocean dipole through the Indonesian Throughflow[J]. Journal of Climate, 2013, 26(9): 2845−2861. doi: 10.1175/JCLI-D-12-00117.1 [99] Drushka K, Sprintall J, Gille S T, et al. Vertical structure of Kelvin waves in the Indonesian Throughflow exit passages[J]. Journal of Physical Oceanography, 2010, 40(9): 1965−1987. doi: 10.1175/2010JPO4380.1 [100] Pujiana K, Gordon A L, Sprintall J. Intraseasonal Kelvin wave in Makassar Strait[J]. Journal of Geophysical Research: Oceans, 2013, 118(4): 2023−2034. doi: 10.1002/jgrc.20069 [101] Napitu A M, Pujiana K, Gordon A L. The Madden-Julian Oscillation’s impact on the Makassar Strait surface layer transport[J]. Journal of Geophysical Research: Oceans, 2019, 124(6): 3538−3550. doi: 10.1029/2018JC014729 [102] Li Mingting, Yuan Dongliang, Gordon A L, et al. South Pacific water intrusion into the sub-thermocline Makassar Strait in the winter of 2016−2017 following a super El Niño[J]. Geophysical Research Letters, 2024, 51(18): e2024GL109965. doi: 10.1029/2024GL109965 [103] Zhu Qiongrui, Wang Chunzai. Contributions of Indo-Pacific forcings to interannual variability of the Indonesian Throughflow in the upper and lower layers[J]. Journal of Geophysical Research: Oceans, 2024, 129(1): e2023JC020306. doi: 10.1029/2023JC020306 [104] Suarez M J, Schopf P S. A delayed action oscillator for ENSO[J]. Journal of the Atmospheric Sciences, 1988, 45(21): 3283−3287. doi: 10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2 [105] Yuan Dongliang, Liu Hailong. Long-wave dynamics of sea level variations during Indian Ocean dipole events[J]. Journal of Physical Oceanography, 2009, 39(5): 1115−1132. doi: 10.1175/2008JPO3900.1 [106] Wang Jing, Yuan Dongliang. Roles of western and eastern boundary reflections in the interannual sea level variations during negative Indian Ocean Dipole events[J]. Journal of Physical Oceanography, 2015, 45(7): 1804−1821. doi: 10.1175/JPO-D-14-0124.1 [107] 陈更新. 链接热带东印度洋环流的海洋波动桥梁[J]. 地球科学进展, 2022, 37(1): 80−86.Chen Gengxin. The ocean wave bridge linking the circulation in the tropical eastern Indian Ocean[J]. Advances in Earth Science, 2022, 37(1): 80−86. [108] Chen Gengxin, Wang Dongxiao, Han Weiqing, et al. The extreme El Niño events suppressing the intraseasonal variability in the eastern tropical Indian Ocean[J]. Journal of Physical Oceanography, 2020, 50(8): 2359−2372. doi: 10.1175/JPO-D-20-0041.1 [109] Xu Tengfei, Li Shujiang, Yang Yingyi, et al. Mooring-observed cross equator propagation of Kelvin waves through the Makassar Strait[J]. Journal of Geophysical Research: Oceans, 2025, 130(4): e2024JC022310. doi: 10.1029/2024JC022310 [110] Wijffels S E, Meyers G, Godfrey J S. A 20-Yr average of the Indonesian Throughflow: regional currents and the interbasin exchange[J]. Journal of Physical Oceanography, 2008, 38(9): 1965−1978. doi: 10.1175/2008JPO3987.1 [111] Liu Qinyan, Feng Ming, Wang Dongxiao, et al. Interannual variability of the Indonesian Throughflow transport: a revisit based on 30 year expendable bathythermograph data[J]. Journal of Geophysical Research: Oceans, 2015, 120(12): 8270−8282. doi: 10.1002/2015JC011351 [112] Vranes K, Gordon A L, Ffield A. The heat transport of the Indonesian Throughflow and implications for the Indian Ocean heat budget[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2002, 49(7/8): 1391−1410. [113] Tillinger D, Gordon A L. Transport weighted temperature and internal energy transport of the Indonesian Throughflow[J]. Dynamics of Atmospheres and Oceans, 2010, 50(2): 224−232. doi: 10.1016/j.dynatmoce.2010.01.002 [114] Wunsch C. Variability of the Indo-Pacific Ocean exchanges[J]. Dynamics of Atmospheres and Oceans, 2010, 50(2): 157−173. doi: 10.1016/j.dynatmoce.2009.12.001 [115] Xie Tengxiang, Newton R, Schlosser P, et al. Long-term mean mass, heat and nutrient flux through the Indonesian Seas, based on the tritium inventory in the pacific and Indian Oceans[J]. Journal of Geophysical Research: Oceans, 2019, 124(6): 3859−3875. doi: 10.1029/2018JC014863 [116] Zhang Tiecheng, Wang Weiqiang, Xie Qiang, et al. Heat contribution of the Indonesian throughflow to the Indian Ocean[J]. Acta Oceanologica Sinica, 2019, 38(4): 72−79. doi: 10.1007/s13131-019-1414-6 [117] Webster P J, Moore A M, Loschnigg J P, et al. Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997−98[J]. Nature, 1999, 401(6751): 356−360. doi: 10.1038/43848 [118] Pang Chengyuan, Nikurashin M, Pena-Molino B, et al. Remote energy sources for mixing in the Indonesian Seas[J]. Nature Communications, 2022, 13(1): 6535. doi: 10.1038/s41467-022-34046-6 [119] Song Qian, Gordon A L. Significance of the vertical profile of the Indonesian Throughflow transport to the Indian Ocean[J]. Geophysical Research Letters, 2004, 31(16): L16307. [120] Clarke A J, Van Gorder S. Improving El Niño prediction using a space-time integration of Indo-Pacific winds and equatorial Pacific upper ocean heat content[J]. Geophysical Research Letters, 2003, 30(7): 2002GL016673. doi: 10.1029/2002GL016673 [121] Kug J S, Kang I S. Interactive Feedback between ENSO and the Indian Ocean[J]. Journal of Climate, 2006, 19(9): 1784−1801. doi: 10.1175/JCLI3660.1 [122] Yamagata T, Masumoto Y. A simple ocean-atmosphere coupled model for the origin of a warm El Niño Southern Oscillation event[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1989, 329(1604): 225−236. [123] Zhou Qian, Duan Wansuo, Mu Mu, et al. Influence of positive and negative Indian Ocean Dipoles on ENSO via the Indonesian Throughflow: results from sensitivity experiments[J]. Advances in Atmospheric Sciences, 2015, 32(6): 783−793. doi: 10.1007/s00376-014-4141-0 [124] Wang Jing, Zhang Shouwen, Jiang Hua, et al. Effects of 2019 subsurface Indian Ocean initialization on the forecast of the 2020/2021 La Niña event[J]. Climate Dynamics, 2023, 60(7): 2419−2435. [125] Sen Gupta A, McGregor S, Van Sebille E, et al. Future changes to the Indonesian Throughflow and Pacific circulation: the differing role of wind and deep circulation changes[J]. Geophysical Research Letters, 2016, 43(4): 1669−1678. doi: 10.1002/2016GL067757 [126] Feng Ming, Zhang Xuebin, Sloyan B, et al. Contribution of the deep ocean to the centennial changes of the Indonesian Throughflow[J]. Geophysical Research Letters, 2017, 44(6): 2859−2867. doi: 10.1002/2017GL072577 [127] Peng Qihua, Xie Shangping, Huang Ruixin, et al. Indonesian Throughflow slowdown under global warming: remote AMOC effect versus regional surface forcing[J]. Journal of Climate, 2023, 36(5): 1301−1318. doi: 10.1175/JCLI-D-22-0331.1 [128] Sun Shantong, Thompson A F. Centennial changes in the Indonesian Throughflow connected to the atlantic meridional overturning circulation: the Ocean’s transient conveyor belt[J]. Geophysical Research Letters, 2020, 47(21): e2020GL090615. doi: 10.1029/2020GL090615 -
下载: