留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合多模态气象信息与MJO时空演变特征的预测模型

徐政 方巍

徐政,方巍. 融合多模态气象信息与MJO时空演变特征的预测模型[J]. 海洋学报,2025,47(10):126–136 doi: 10.12284/hyxb20250101
引用本文: 徐政,方巍. 融合多模态气象信息与MJO时空演变特征的预测模型[J]. 海洋学报,2025,47(10):126–136 doi: 10.12284/hyxb20250101
Xu Zheng,Fang Wei. A predictive model integrating multimodal meteorological information and spatiotemporal evolution of MJO[J]. Haiyang Xuebao,2025, 47(10):126–136 doi: 10.12284/hyxb20250101
Citation: Xu Zheng,Fang Wei. A predictive model integrating multimodal meteorological information and spatiotemporal evolution of MJO[J]. Haiyang Xuebao,2025, 47(10):126–136 doi: 10.12284/hyxb20250101

融合多模态气象信息与MJO时空演变特征的预测模型

doi: 10.12284/hyxb20250101
基金项目: 国家自然科学基金面上项目(42475149);中国气象局流域强降水重点开放实验室开放研究基金(2023BHR–Y14);灾害天气国家重点实验室开放课题(2024LASW–B19);广西重点研发计划(桂科AB25069126)。
详细信息
    作者简介:

    徐政(2000—),男,江苏省徐州市人,研究方向为深度学习、MJO预测。E-mail:2651479762@qq.com

    通讯作者:

    方巍,教授,研究方向为人工智能、大数据分析、机器学习和气象信息技术。E-mail:fangwei@nuist.edu.cn

  • 中图分类号: P462.4

A predictive model integrating multimodal meteorological information and spatiotemporal evolution of MJO

  • 摘要: 马登–朱利安振荡(Madden-Julian Oscillation,MJO)作为热带季节内变率的主要模态,其准确预测对于提升次季节预测能力至关重要。然而,MJO具有多尺度演变特征和高度非线性动力过程,现有预测方法在捕捉其复杂时空结构方面仍存在不足。为此,本文提出了一种融合多模态数据与时空特征的MJO预测模型(Multimodal data and Integrated Spatiotemporal features for MJO prediction,MISM)。该模型以历史实时多变量MJO指数(Real-time Multivariate MJO index,RMM)和多个气象因子作为联合输入,通过压缩激励模块、卷积模块和Swin Transformer模块构建空间特征提取模块,并引入自回归注意力机制实现非线性时间序列建模。实验结果表明,MISM模型的预测技巧可延伸至30 d以上,并在25 d以上的长期预测阶段表现优于传统的动力学和统计学方法。此外,本文利用显著性图对气象因子贡献区域进行分析,结果显示西太平洋及印尼群岛在不同提前期均呈现较高敏感性,海洋区域贡献普遍强于陆地。水汽和海温异常在短期与中期作用更突出,而低层风场和对流活动在长期阶段贡献较强,高层环流则在各时效保持稳定影响,体现了模型对MJO演变机制的识别能力。
  • 图  1  MISM模型结构

    Fig.  1  Model structure of MISM

    图  2  SE模块结构

    Fig.  2  SE module architecture

    图  3  自回归注意力机制Token生成

    Fig.  3  Autoregressive attention Token generation

    图  4  MISM模型预测性能

    Fig.  4  MISM model prediction performance

    图  5  多模型预测技巧对比

    Fig.  5  Comparison of multi-model forecast skills

    图  6  各气象因子的显著性分布图

    Fig.  6  The saliency maps of the meteorological variables

    表  1  消融实验结果

    Tab.  1  Results of the ablation experiments

    模型 不同提前期τ/d
    τ = 1 τ = 3 τ = 5 τ = 10 τ = 15 τ = 20 τ = 25 τ = 30 τ = 35
    MISM 0.963 0.896 0.820 0.720 0.656 0.626 0.584 0.527 0.472
    气象因子 0.906 0.823 0.780 0.703 0.642 0.604 0.555 0.475 0.467
    历史指数 0.943 0.837 0.697 0.354 0.245 0.223 0.219 0.167 0.100
    w/o Swin 0.942 0.856 0.750 0.519 0.342 0.324 0.298 0.228 0.157
    w/o Auto 0.867 0.539 0.694 0.465 0.580 0.288 0.390 0.431 0.292
      注:加粗的数据是该指标下最优的情况。
    下载: 导出CSV
  • [1] 徐邦琪, 臧钰歆, 朱志伟, 等. 时空投影模型(STPM)的次季节至季节(S2S)预测应用进展[J]. 大气科学学报, 2020, 43(1): 212−224.

    Xu Bangqi, Zhang Yuxin, Zhu Zhiwei, et al. Subseasonal-to-seasonal (S2S) prediction using the spatial-temporal projection model (STPM)[J]. Transactions of Atmospheric Sciences, 2020, 43(1): 212−224.
    [2] 伍继业, 谢欣芮, 罗京佳. 基于改进版NUIST CFS1.1的热带大气季节内信号及其对中国气温降水影响的预测评估[J]. 大气科学学报, 2024, 47(2): 284−299.

    Wu Jiye, Xie Xinrui, Luo Jingjia. Prediction of tropical intraseasonal oscillations and their impacts on air temperature and precipitation in China using the upgraded version of NUIST CFS1.1[J]. Transactions of Atmospheric Sciences, 2024, 47(2): 284−299.
    [3] White C J, Domeisen D I V, Acharya N, et al. Advances in the application and utility of subseasonal-to-seasonal predictions[J]. Bulletin of the American Meteorological Society, 2022, 103(6): E1448−E1472. doi: 10.1175/BAMS-D-20-0224.1
    [4] 李力锋, 陈雄, 李崇银, 等. 2019年2−3月中国南方持续性降水成因及其与MJO的关系[J]. 气象, 2022, 48(9): 1090−1100.

    Li Lifeng, Chen Xiong, Li Chongyin, et al. Causes of persistent precipitation over southern China during February-March 2019 and the relationship with MJO[J]. Meteorological Monthly, 2022, 48(9): 1090−1100.
    [5] Ratna S B, Sabeerali C T, Sharma T, et al. Combined influence of El Niño, IOD and MJO on the Indian Summer Monsoon Rainfall: case study for the years 1997 and 2015[J]. Atmospheric Research, 2024, 299: 107214. doi: 10.1016/j.atmosres.2023.107214
    [6] Cowan T, Wheeler M C, Marshall A G. The combined influence of the Madden-Julian oscillation and El Niño-Southern Oscillation on Australian rainfall[J]. Journal of Climate, 2023, 36(2): 313−334. doi: 10.1175/JCLI-D-22-0357.1
    [7] Zhou Wenyu, Yang Da, Xie Shangping, et al. Amplified Madden-Julian oscillation impacts in the Pacific-North America region[J]. Nature Climate Change, 2020, 10(7): 654−660. doi: 10.1038/s41558-020-0814-0
    [8] Yao Junchen, Liu Xiangwen, Wu Tongwen, et al. Progress of MJO prediction at CMA from phase I to phase II of the sub-seasonal to seasonal prediction project[J]. Advances in Atmospheric Sciences, 2023, 40(10): 1799−1815. doi: 10.1007/s00376-023-2351-z
    [9] Wheeler M C, Hendon H H. An all-season real-time multivariate MJO index: development of an index for monitoring and prediction[J]. Monthly Weather Review, 2004, 132(8): 1917−1932. doi: 10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2
    [10] Zhu Zhiwei, Li T, Hsu P C, et al. A spatial-temporal projection model for extended-range forecast in the tropics[J]. Climate Dynamics, 2015, 45(3/4): 1085−1098.
    [11] Wu Jiye, Li Yue, Luo Jingjia, et al. Prediction and predictability of boreal winter MJO using a multi-member subseasonal to seasonal forecast system of NUIST (NUIST CFS 1.1)[J]. Climate Dynamics, 2024, 62(5): 3003−3026. doi: 10.1007/s00382-023-07047-4
    [12] Dey A, Chattopadhyay R, Sahai A K, et al. MJO prediction skill using IITM extended range prediction system and comparison with ECMWF S2S[J]. Pure and Applied Geophysics, 2020, 177(10): 5067−5079. doi: 10.1007/s00024-020-02487-z
    [13] Yuval J, O’Gorman P A. Stable machine-learning parameterization of subgrid processes for climate modeling at a range of resolutions[J]. Nature communications, 2020, 11(1): 3295. doi: 10.1038/s41467-020-17142-3
    [14] Toms B A, Barnes E A, Ebert-Uphoff I. Physically interpretable neural networks for the geosciences: applications to earth system variability[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(9): e2019MS002002. doi: 10.1029/2019MS002002
    [15] Weyn J A, Durran D R, Caruana R. Improving data-driven global weather prediction using deep convolutional neural networks on a cubed sphere[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(9): e2020MS002109. doi: 10.1029/2020MS002109
    [16] 杨淑贤, 零丰华, 应武杉, 等. 人工智能技术气候预测应用简介[J]. 大气科学学报, 2022, 45(5): 641−659.

    Yang Shuxian, Ling Fenghua, Ying Wushan, et al. A brief overview of the application of artificial intelligence to climate prediction[J]. Transactions of Atmospheric Sciences, 2022, 45(5): 641−659.
    [17] Kim H, Ham Y G, Joo Y S, et al. Deep learning for bias correction of MJO prediction[J]. Nature Communications, 2021, 12(1): 3087.
    [18] Delaunay A, Christensen H M. Interpretable deep learning for probabilistic MJO prediction[J]. Geophysical Research Letters, 2022, 49(16): e2022GL098566. doi: 10.1029/2022GL098566
    [19] Shin N Y, Kim D, Kang D, et al. Deep learning reveals moisture as the primary predictability source of MJO[J]. npj Climate and Atmospheric Science, 2024, 7(1): 11. doi: 10.1038/s41612-023-00561-6
    [20] Shin N Y, Kang D, Kim D, et al. Data-driven investigation on the boreal summer MJO predictability[J]. npj Climate and Atmospheric Science, 2024, 7(1): 248. doi: 10.1038/s41612-024-00799-8
    [21] Chen Lei, Zhong Xiaohui, Li Hao, et al. A machine learning model that outperforms conventional global subseasonal forecast models[J]. Nature Communications, 2024, 15(1): 6425. doi: 10.1038/s41467-024-50714-1
    [22] 胡家晖, 陆波, 李昊, 等. 人工智能模型“风顺”对中国区域降水技巧检验[J]. 大气科学学报, 2025, 48(3): 366−376.

    Hu Jiahui, Lu Bo, Li Hao, et al. Skill test of the artificial intelligence model “Fengshun” for precipitation forecasting in China[J]. Transactions of Atmospheric Sciences, 2025, 48(3): 366−376.
    [23] 张浩睿, 周磊. 热带季节内振荡在印尼海区域东传路径的分布及其机制[J]. 海洋学报, 2023, 45(10): 13−30.

    Zhang Haorui, Zhou Lei. The distribution of eastward propagating pathways of the Tropical Intraseasonal Oscillation and its mechanism in the Maritime Continent[J]. Haiyang Xuebao, 2023, 45(10): 13−30.
    [24] Dai Kuai, Li Xutao, Ma Chi, et al. Learning spatial-temporal consistency for satellite image sequence prediction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4104517.
    [25] Chen Guosen. Deciphering chaos in the Madden-Julian oscillation[J]. npj Climate and Atmospheric Science, 2024, 7(1): 311. doi: 10.1038/s41612-024-00870-4
    [26] Li Hongliang, Zhang Nong, Xu Zhewen, et al. DK-STN: a domain knowledge embedded spatio-temporal network model for MJO forecast[J/OL]. Expert Systems with Applications, Forthcoming, 2023[2023−09−18][2025−07−17]. https://dx.doi.org/10.2139/ssrn.4574792.
    [27] Liu Yumin, Duffy K, Dy J G, et al. Explainable deep learning for insights in El Niño and river flows[J]. Nature Communications, 2023, 14(1): 339. doi: 10.1038/s41467-023-35968-5
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  149
  • HTML全文浏览量:  95
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-17
  • 修回日期:  2025-10-28
  • 网络出版日期:  2025-11-04
  • 刊出日期:  2025-10-31

目录

    /

    返回文章
    返回