The relationship between Trachurus murphyi and the environment at different time scales
-
摘要: 智利竹筴鱼(Trachurus murphyi)资源量受环境影响明显,而环境本身也会随时间的变化而变化,存在短期的季节性变动和长期的模态变动。为更好地探究环境与渔业资源之间的关系,本文基于1970−2017年智利竹筴鱼资源量与环境气候数据,利用积分回归分析月间变化趋势,利用模态分析和全子集回归分析,从年间尺度分析了环境气候与智利竹筴鱼资源变动之间的联系。月间分析结果表明:海表面温度对资源量的影响随季节变化最为明显,尤其在产卵和越冬季节。其次为太平洋年代际涛动,海表面盐度和厄尔尼诺指数的影响在不同月份变动幅度较小,海表面高度产生的影响几乎不随月份改变。年间分析结果表明:在长时间尺度上,智利竹筴鱼资源变动存在4个模态变化时期,每个模态中占据主导地位的影响因子组合存在区别,尤其是随着近些年全球气候变化的加剧,渔业资源可能受到了更多种环境要素的影响,导致环境对渔业的影响模式发生了明显改变。Abstract: The Trachurus murphyi is affected by the environment, and the environment itself changes with time, with short-term seasonal changes and long-term regime shifts. Based on the data on jack mackerel stock and the environment from 1970 to 2017, this paper analyzes the relationship between the environment and jack mackerel stock from month to year using integral regression, modal analysis, and full subset regression analysis. The month-on-month analysis results show that the influence of Sea Surface Temperature (SST) on stock biomass changes most obviously with time. Chilean jack mackerel is more dependent on SST in spawning and overwintering seasons; Followed by the Pacific Decadal Oscillation (PDO), The effects of Sea Surface Salinity (SSS) and Oceanic Nino Index (ONI) vary less in different months; The impact of Sea Surface Height (SSH) hardly changes from month to month. The annual analysis revealed four distinct regime shifts in Chilean mackerel resources over a long-time scale, with each regime characterized by unique dominant factor combinations. Notably, with the escalation of global climate change in recent years, a broader array of environmental factors has potentially influenced fishery resources, leading to substantial modifications in the environmental impact mode on fisheries.
-
Key words:
- Chilean Jack mackerel /
- integral regression /
- full subset regression /
- regime shift /
- environment
-
表 1 1970−2017年智利竹筴鱼资源量与环境因子的全子集分析
Tab. 1 All-subsets regression of Chilean jack mackerel resources and environmental factors from 1970 to 2017
非模态组合 包含的环境数据 组合1 SSH SST 组合2 SSH SST SSS 组合3 SSH SST PDO SSS 组合4 SSH SST ONI PDO SSS 组合5 SSH 表 2 第一、二、三、四模态下资源量与环境因子的全子集分析
Tab. 2 Full subset analysis of Chilean jack mackerel resources and environmental factors in the first, second, third, and fourth regime
模态 包含的环境数据 第一模态 组合1 SSH PDO ONI 组合2 SSH PDO ONI SSS 组合3 PDO ONI 组合4 SSH SST PDO ONI SSS 组合5 ONI 第二模态 组合1 SST ONI SSS 组合2 SSH SST 组合3 SSH 组合4 SSH SST ONI SSS 组合5 SSH SST PDO ONI SSS 第三模态 组合1 SSH PDO ONI 组合2 SSH PDO ONI SSS 组合3 SSH SST PDO ONI SSS 组合4 SSH 组合5 SSH ONI 第四模态 组合1 PDO ONI 组合2 ONI 组合3 SST PDO ONI 组合4 SST PDO ONI SSS 组合5 SSH SST PDO ONI SSS 表 3 各模态中的最佳模型及AIC值
Tab. 3 The best model and AIC value in each regime
回归模型 AIC值 不区分模态 Ln (bio) = 0.3 × SSH −0.6 × SST + 14.9 54.2 第一模态 Ln (bio) = 0.03 × SSH + 0.04 × PDO + 0.07 × ONI + 7.1 −34.3 第二模态 Ln (bio) = −7.4 × SSS −0.4 × SST + 0.07 × ONI + 252.8 −20.8 第三模态 Ln (bio) = 0.06 × SSH + 0.1 × PDO −0.2 × ONI + 6.7 −3.7 第四模态 Ln (bio) = −0.1 × PDO + 0.2 × ONI + 6.2 6.2 -
[1] 张敏, 邹晓荣, 季星辉, 等. 东南太平洋公海水域智利竹䇲鱼探捕及其商业开发前景探讨[J]. 水产学报, 2005, 29(3): 386−391.Zhang Min, Zou Xiaorong, Ji Xinghui, et al. Discussion on exploratory fishing of Chilean jack mackerel (Trachurus murphyi) in the open sea of the southeast Pacific and prospect of its commercial exploitation[J]. Journal of Fisheries of China, 2005, 29(3): 386−391. [2] SPRFMO. South Pacific Regional Fisheries Management Organisation. 7th scientific committee meeting report[R]. Havana: SPRFMO, 2019. [3] SPRFMO. South Pacific Regional Fisheries Management Organisation. 11th scientific committee meeting report[R]. Panama City: SPRFMO, 2023. [4] Yin Fei, Peng Shiming, Sun Peng, et al. Effects of low salinity on antioxidant enzymes activities in kidney and muscle of juvenile silver pomfret Pampus argenteus[J]. Acta Ecologica Sinica, 2011, 31(1): 55−60. doi: 10.1016/j.chnaes.2010.11.009 [5] 张晨捷, 施兆鸿, 王建钢, 等. 盐度影响海水硬骨鱼类渗透压调节机理的研究与展望[J]. 海洋渔业, 2013, 35(1): 108−116. doi: 10.3969/j.issn.1004-2490.2013.01.016Zhang Chenjie, Shi Zhaohong, Wang Jiangang, et al. On salinity-related effects on osmoregulation mechanism in marine teleost[J]. Marine Fisheries, 2013, 35(1): 108−116. doi: 10.3969/j.issn.1004-2490.2013.01.016 [6] Nakata H, Kimura S, Okazaki Y, et al. Implications of meso-scale eddies caused by frontal disturbances of the Kuroshio Current for anchovy recruitment[J]. Ices Journal of Marine Science, 2000, 57(1): 143−152. doi: 10.1006/jmsc.1999.0565 [7] 牛明香, 李显森, 徐玉成. 智利外海竹筴鱼中心渔场时空变动的初步研究[J]. 海洋科学, 2009, 33(11): 105−109.Niu Mingxiang, Li Xiansen, Xu Yucheng. Preliminary study on spatio-temporal change of central fishing ground of Chilean jack mackerel (Trachurus murphyi) in the offshore waters of Chile[J]. Marine Sciences, 2009, 33(11): 105−109. [8] Zhang H, Zhang Shengmao, Cui X S, et al. Spatio-temporal dynamics in the location of the fishing grounds and catch per unit effort (CPUE) for Chilean jack mackerel (Trachurus murphyi Nichols, 1920) from Chinese trawl fleets on the high seas of the Southeast Pacific Ocean, 2001-2010[J]. Journal of Applied Ichthyology, 2015, 31(4): 646−656. doi: 10.1111/jai.12765 [9] Hare S R, Mantua N J, Francis R C. Inverse production regimes: Alaska and West Coast Pacific Salmon[J]. Fisheries, 1999, 24(1): 6−14. doi: 10.1577/1548-8446(1999)024<0006:IPR>2.0.CO;2 [10] Shanks A L. Atmospheric forcing drives recruitment variation in the Dungeness crab (Cancer magister), revisited[J]. Fisheries Oceanography, 2013, 22(4): 263−272. doi: 10.1111/fog.12020 [11] 肖启华, 黄硕琳. 气候变化对东南太平洋智利竹筴鱼渔获量的影响[J]. 中国水产科学, 2021, 28(8): 1020−1029.Xiao Qihua, Huang Shuolin. Impact of climate change on Chilean jack mackerel catch in the Southeast Pacific[J]. Journal of Fishery Sciences of China, 2021, 28(8): 1020−1029. [12] Tian Yongjun, Akamine T, Suda M. Modeling the influence of oceanic-climatic changes on the dynamics of Pacific saury in the northwestern Pacific using a life cycle model[J]. Fisheries Oceanography, 2004, 13(S1): 125−137. doi: 10.1111/j.1365-2419.2004.00314.x [13] Folke C, Carpenter S, Walker B, et al. Regime Shifts, resilience, and biodiversity in ecosystem management[J]. Annual Review of Ecology, Evolution, and Systematics, 2004, 35: 557−581. doi: 10.1146/annurev.ecolsys.35.021103.105711 [14] Hare S R, Mantua N J. Empirical evidence for North Pacific regime shifts in 1977 and 1989[J]. Progress in Oceanography, 2000, 47(2/4): 103−145. [15] Belgrano A, Schjolden N, Loch T, et al. Regime shifts in fisheries management: lessons from the Arcto-Norwegian cod[J]. Marine Policy, 2008, 32(3): 416-425. (查阅网上资料, 未找到本条文献信息, 请确认) [16] Scheffer M, Carpenter S R. Catastrophic regime shifts in ecosystems: linking theory to observation[J]. Trends in Ecology & Evolution, 2003, 18(12): 648−656. [17] Garcia S M, Ryman T. A new generation of management plans for the Baltic Sea: coping with a changing ecosystem[J]. ICES Journal of Marine Science, 2008, 65(7): 1105−1110. (查阅网上资料, 未找到本条文献信息, 请确认) [18] 朱海霞, 李东明, 王铭, 等. 基于积分回归法黑龙江省作物产量动态预报研究[J]. 气象与环境学报, 2018, 34(3): 86−92. doi: 10.3969/j.issn.1673-503X.2018.03.010Zhu Haixia, Li Dongming, Wang Ming, et al. Research on crop yield dynamic forecast based on Integration Regression Method in Heilongjiang province[J]. Journal of Meteorology and Environment, 2018, 34(3): 86−92. doi: 10.3969/j.issn.1673-503X.2018.03.010 [19] 贾建英, 刘一锋, 彭妮, 等. 基于积分回归法甘肃省冬小麦产量动态预报[J]. 气象与环境学报, 2016, 32(2): 100−105.Jia Jianying, Liu Yifeng, Peng Ni, et al. Dynamic forecast of winter wheat yield based on an integral regression method in Gansu province[J]. Journal of Meteorology and Environment, 2016, 32(2): 100−105. [20] 张智韬, 韩佳, 王新涛, 等. 基于全子集-分位数回归的土壤含盐量反演研究[J]. 农业机械学报, 2019, 50(10): 142−152. doi: 10.6041/j.issn.1000-1298.2019.10.016Zhang Zhitao, Han Jia, Wang Xintao, et al. Soil salinity inversion based on best subsets-quantile regression model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(10): 142−152. doi: 10.6041/j.issn.1000-1298.2019.10.016 [21] SPRFMO. South Pacific Regional Fisheries Management Organisation. 6th scientific committee meeting report[R]. Puerto Varas: SPRFMO, 2018. [22] Hintzen N T, Corten A, Gerlotto F, et al. Hydrography and Jack mackerel stock in the South Pacific[R]. Ijmuiden: IMARES, 2013. [23] Muck P, De Castillo O S, Carrasco S. Abundance of sardine, mackerel and horse mackerel eggs and larvae and their relationship to temperature, turbulence and anchoveta biomass off Peru[R]. ICLARM, 1987. (查阅网上资料, 未找到本条文献出版地, 请确认) [24] Gierach M M, Lee T, Turk D, et al. Biological response to the 1997-98 and 2009-10 El Niño events in the equatorial Pacific Ocean[J]. Geophysical Research Letters, 2012, 39(10): L10602. [25] 吕俊梅, 琚建华, 张庆云, 等. 太平洋海温场两种不同时间尺度气候模态的分析[J]. 海洋学报, 2005, 27(5): 30−37. doi: 10.3321/j.issn:0253-4193.2005.05.005Lü Junmei, Ju Jianhua, Zhang Qingyun, et al. The analysis of two climate patterns on different time scales in Pacific sea temperature fields[J]. Haiyang Xuebao, 2005, 27(5): 30−37. doi: 10.3321/j.issn:0253-4193.2005.05.005 [26] 唐启义, 唐睿. DPS数据处理系统-第二卷 现代统计及数据挖掘[M]. 北京: 科学出版社, 2020: 558-564.Tang Qiyi, Tang Rui. DPS Data Processing System - Volume 2 Contemporary Statistics and Data Mining[M]. Beijing: Science Press, 2020: 558−564. [27] Rodionov S, Overland J E. Application of a sequential regime shift detection method to the Bering Sea ecosystem[J]. ICES Journal of Marine Science, 2005, 62(3): 328−332. doi: 10.1016/j.icesjms.2005.01.013 [28] 张畅, 李纲, 陈新军. 不同模态下气候变化对智利竹筴鱼补充量的影响[J]. 海洋学报, 2021, 43(9): 48−58.Zhang Chang, Li Gang, Chen Xinjun. Impact of climate change on recruitment of Trachurus murphyi based on different regimes[J]. Haiyang Xuebao, 2021, 43(9): 48−58. [29] Lawless J F, Singhal K. ISMOD: an all-subsets regression program for generalized linear models. I. Statistical and computational background[J]. Computer Methods and Programs in Biomedicine, 1987, 24(2): 117−124. doi: 10.1016/0169-2607(87)90022-8 [30] 张畅, 李纲, 陈新军. 南太平洋智利竹筴鱼渔业生物学与评估管理研究进展[J]. 海洋湖沼通报, 2023, 45(6): 161−170.Zhang Chang, Li Gang, Chen Xinjun. Proceedings of fisheries biology and assessment of Jack mackerel (Trachurus murphyi) inhabiting South Pacific[J]. Transactions of Oceanology and Limnology, 2023, 45(6): 161−170. [31] Bertrand A, Habasque J, Hattab T, et al. 3-D habitat suitability of jack mackerel Trachurus murphyi in the Southeastern Pacific, a comprehensive study[J]. Progress in Oceanography, 2016, 146: 199−211. doi: 10.1016/j.pocean.2016.07.002 [32] 徐红云, 汪金涛, 陈新军, 等. 海表水温变化对东南太平洋智利竹筴鱼栖息地分布的影响[J]. 海洋渔业, 2016, 38(4): 337−347. doi: 10.3969/j.issn.1004-2490.2016.04.001Xu Hongyun, Wang Jintao, Chen Xinjun, et al. Influence of sea surface temperature changes on Chilean jack mackerel (Trachurus murphyi) habitat in the Southeast Pacific[J]. Marine Fisheries, 2016, 38(4): 337−347. doi: 10.3969/j.issn.1004-2490.2016.04.001 [33] SPRFMO. South Pacific Regional Fisheries Management Organisation. 7th scientific committee meeting report[R]. Havana: SPRFMO, 2019. (查阅网上资料, 本条文献与第2条重复, 请确认) [34] Fiedler P C. Environmental change in the eastern tropical Pacific Ocean: review of ENSO and decadal variability[J]. Marine Ecology Progress Series, 2002, 244: 265−283. doi: 10.3354/meps244265 [35] Arcos D F, Cubillos L A, Núñez S P. The jack mackerel fishery and El Niño 1997-98 effects off Chile[J]. Progress in Oceanography, 2001, 49(1/4): 597−617. [36] Luo Jingjia, Yamagata T. Long-term El Niño-Southern Oscillation (ENSO)-like variation with special emphasis on the South Pacific[J]. Journal of Geophysical Research: Oceans, 2001, 106(C10): 22211−22227. doi: 10.1029/2000JC000471 [37] Doney S C, Ruckelshaus M, Duffy J E, et al. Climate change impacts on marine ecosystems[J]. Annual Review of Marine Science, 2012, 4: 11−37. doi: 10.1146/annurev-marine-041911-111611 [38] Hofmann M, Gatu C, Kontoghiorghes E J. Efficient algorithms for computing the best subset regression models for large-scale problems[J]. Computational Statistics & Data Analysis, 2007, 52(1): 16−29. [39] Ianelli J N, Hollowed A B, Haynie A C, et al. Evaluating management strategies for eastern Bering Sea walleye pollock (Theragra chalcogramma) in a changing environment[J]. ICES Journal of Marine Science, 2011, 68(6): 1297−1304. doi: 10.1093/icesjms/fsr010 [40] IPCC (Intergovernmental Panel on Climate Change). Climate change 2014-impacts, adaptation, and vulnerability: part A: global and sectoral aspects[R]. Cambridge: Cambridge University Press, 2014. [41] Pauly D, Zeller D. Fishing and the impact on global marine biodiversity[J]. Science, 2016, 354(6312): 702−704. (查阅网上资料, 未找到本条文献信息, 请确认) [42] Walters C J, Martell S J D. The role of ecological interactions in the dynamics of marine fisheries[J]. Fish and Fisheries, 2004, 5(2), 151−171. (查阅网上资料, 未找到本条文献信息, 请确认)