Molecular basis of FGF signaling in heat-induced polyp bailout in Pocillopora damicornis
-
摘要: 本研究从鹿角杯形珊瑚(Pocillopora damicornis)中鉴定并克隆了2个成纤维细胞生长因子(Fibroblast growth factor,FGF)基因,命名为PdFGF1和PdFGF17。序列分析结果表明,PdFGF1与PdFGF17分别编码195个和149个氨基酸,均含有信号肽和典型的FGF结构域,并具有β–折叠、η–环等拓扑结构。高等动物FGF家族分为FGF1、FGF4、FGF7、FGF8、FGF9、FGF11、FGF19等7个亚家族。多序列比对和系统进化树分析结果表明,PdFGF1属于FGF1亚家族,与人(Homo sapiens)FGF1的序列一致性为30.15%;PdFGF17属于FGF8亚家族,与人FGF1的序列一致性为29.36%。为进一步揭示PdFGF1和PdFGF17的生物学功能,本研究分析了高温诱导鹿角杯形珊瑚水螅体脱离的转录组数据,发现在水螅体高温脱离过程中FGF家族基因(PdFGF1、PdFGF2、PdFGF9、PdFGF17、PdFGF18、PdFGFR1、PdFGFR2、PdFGFR3及PdFGFR4)的表达水平显著上升,且FGF信号途径能够激活下游Ras/MAPK级联反应,驱动细胞骨架重构与细胞黏附调节;Cytoscape基因共表达网络分析还揭示FGF与珊瑚共肉(coenosarc)胞外基质(Extracellular Matrix, ECM)降解相关基因(ADAMTSs、COL21A1、CTSZ、P4HA等)存在显著共表达关系。综上,本研究发现高温激活了鹿角杯形珊瑚的FGF信号途径,促进了共肉组织ECM的降解,进而介导共肉裂解和水螅体脱离。
-
关键词:
- 成纤维细胞生长因子 /
- 水螅体脱离 /
- 热胁迫 /
- 加权基因共表达网络分析 /
- 基因克隆
Abstract: In this study, two fibroblast growth factor (FGF) genes, named as PdFGF1 and PdFGF17, were identified and cloned from the coral Pocillopora damicornis. Sequence analysis showed that PdFGF1 and PdFGF17 encode 195 and 149 amino acids, respectively. Both contain a signal peptide and a typical FGF domain, with characteristic β–sheets and η–loops in their topological structures. The FGF family in higher animals can be divided into seven subfamilies (FGF1, FGF4, FGF7, FGF8, FGF9, FGF11, and FGF19). Multiple sequence alignment and phylogenetic analysis revealed that PdFGF1 belongs to the FGF1 subfamily, sharing 30.15% sequence identity with HsFGF1 (Homo sapiens), whereas PdFGF17 clusters with the FGF8 subfamily, sharing 29.36% identity with HsFGF17. To further elucidate their biological roles, transcriptomic analysis was performed on P. damicornis under heat stress induced polyp bailout. The results showed that the expression levels of FGF family genes (PdFGF1, PdFGF2, PdFGF9, PdFGF17, PdFGF18, PdFGFR1, PdFGFR2, PdFGFR3 and PdFGFR4) were significantly upregulated during the detachment process. Moreover, the FGF signaling pathway was found to activate the downstream Ras/MAPK cascade, thereby regulating cytoskeletal remodeling and cell adhesion. Gene co-expression network analysis using Cytoscape further revealed significant co-expression relationships between FGF genes and extracellular matrix (ECM) degrading genes in the coenosarc tissue, including ADAMTSs, COL21A1, CTSZ, and P4HA. Collectively, these findings suggest that heat stress activates the FGF signaling pathway in P. damicornis, promoting ECM degradation and ultimately mediating coenosarc dissociation and polyp bailout. -
图 5 WGCNA模块筛选及功能富集分析
(A)表型与模块相关性热图;(B)模块基因GO富集分析;(C)表型与模块关联散点图;(D)模块基因KEGG功能分析
Fig. 5 WGCNA module selection and functional enrichment analysis
(A) Heatmap of phenotype and module correlation; (B) GO enrichment analysis of module genes; (C) Scatter plot of phenotype and module association; (D) KEGG functional analysis of module genes
表 1 基因克隆引物序列
Tab. 1 Primer sequences of genes used for gene cloning
引物名称 引物序列(5’-3’) 产物大小(bp) PdEF-CerF CAGGATGTTTACAAGATTGGAGGT 604 PdEF-CerR TTGTCACTTTGCCAGCGACTT PdFGF1-F ATGGATCTATTACAGGCTATTTTTGTC 588 PdFGF1-R TTAGCTTATTTCCCTGCTTTCAATC PdFGF17-F ATGAAACACAACACAGCAGTTCTATT 525 PdFGF17-R TTAAGGAATTGAACTGAGTGAAAAATAC M13-47 CGCCAGGGTTTTCCCAGTCACGAC / 表 2 各阶段差异表达基因数量统计
Tab. 2 Statistics of the number of differentially expressed genes at each stage
阶段 差异表达
基因总数显著上调差异
表达基因数显著下调差异
表达基因数S1-S0 20569 1617 1910 S2-S0 20552 4169 6711 S3-S0 20499 4298 7568 表 3 turquoise共表达模块中Hub基因及其相关性得分
Tab. 3 Hub genes of the turquoise co-expressing module and their correlation score
Rank Gene name Score Rank Gene name Score 1 TLR2 0.87849 23 COL21A1 0.83680 2 CAT-4 0.86767 24 HMCN1 0.83430 3 ADAMTS6 0.86348 25 CTRB 0.83372 4 BBOX1 0.86028 26 ARSB 0.83369 5 ALP 0.85866 27 TNIP1 0.83168 6 DAO 0.85319 28 RASA1 0.82733 7 MYOF 0.85051 29 PXDN 0.82697 8 G6PD 0.85011 30 FBN1 0.82631 9 RNF213 0.85010 31 TRAF3 0.82566 10 ADORA1 0.84921 32 FGFR4 0.82450 11 RAPH1 0.84804 33 RAPGEF2 0.81981 12 CTHRC1 0.84599 34 RASGRP3 0.81933 13 TBCE 0.84595 35 CASP3 0.81677 14 DZIP3 0.84586 36 ADAMTS1 0.81438 15 IMSP1 0.84517 37 FGFR2 0.81342 16 ARF 0.84459 38 CA3 0.81249 17 MC4R 0.84417 39 ZnMP-nas14 0.80935 18 ALOX5 0.84146 40 MAP4K3 0.80697 19 MCT10 0.84112 41 P4HA1 0.80662 20 ATF2 0.83929 42 CTSZ 0.80388 21 LRRC74B 0.83893 43 FGF1 0.80222 22 RGS6 0.83718 -
[1] Frölicher T L, Fischer E M, Gruber N. Marine heatwaves under global warming[J]. Nature, 2018, 560(7718): 360−364. doi: 10.1038/s41586-018-0383-9 [2] Sun Fulin, Yang Hongqiang, Zhang Xiyang, et al. Metabolic and metatranscriptional characteristics of corals bleaching induced by the most severe marine heatwaves in the South China Sea[J]. Science of the Total Environment, 2023, 858: 160019. doi: 10.1016/j.scitotenv.2022.160019 [3] Smith M R, Myers S S. Impact of anthropogenic CO2 emissions on global human nutrition[J]. Nature Climate Change, 2018, 8(9): 834−839. doi: 10.1038/s41558-018-0253-3 [4] Hawthorn A, Berzins I K, Dennis M M, et al. An introduction to lesions and histology of scleractinian corals[J]. Veterinary Pathology, 2023, 60(5): 529−546. doi: 10.1177/03009858231189289 [5] Brown B E, Le Tissier M D A, Bythell J C. Mechanisms of bleaching deduced from histological studies of reef corals sampled during a natural bleaching event[J]. Marine Biology, 1995, 122(4): 655−663. doi: 10.1007/BF00350687 [6] Hall V R, Hughes T P. Reproductive strategies of modular organisms: comparative studies of reef- building corals[J]. Ecology, 1996, 77(3): 950−963. doi: 10.2307/2265514 [7] Schweinsberg M, Gösser F, Tollrian R. The history, biological relevance, and potential applications for polyp bailout in corals[J]. Ecology and Evolution, 2021, 11(13): 8424−8440. doi: 10.1002/ece3.7740 [8] Thummasan M, Casareto B E, Ramphul C, et al. Physiological responses (Hsps 60 and 32, caspase 3, H2O2 scavenging, and photosynthetic activity) of the coral Pocillopora damicornis under thermal and high nitrate stresses[J]. Marine Pollution Bulletin, 2021, 171: 112737. doi: 10.1016/j.marpolbul.2021.112737 [9] Sammarco P W. Polyp bail-out: an escape response to environmental stress and a new means of reproduction in corals[J]. Marine Ecology Progress Series, 1982, 10(1): 57−65. [10] Serrano E, Coma R, Inostroza K, et al. Polyp bail-out by the coral Astroides calycularis (Scleractinia, Dendrophylliidae)[J]. Marine Biodiversity, 2018, 48(3): 1661−1665. doi: 10.1007/s12526-017-0647-x [11] Higuchi T, Yuyama I, Nakamura T. The combined effects of nitrate with high temperature and high light intensity on coral bleaching and antioxidant enzyme activities[J]. Regional Studies in Marine Science, 2015, 2: 27−31. doi: 10.1016/j.rsma.2015.08.012 [12] Wecker P, Lecellier G, Guibert I, et al. Exposure to the environmentally-persistent insecticide chlordecone induces detoxification genes and causes polyp bail-out in the coral P. damicornis[J]. Chemosphere, 2018, 195: 190−200. doi: 10.1016/j.chemosphere.2017.12.048 [13] Hoogenboom M, Beraud E, Ferrier-Pagès C. Relationship between symbiont density and photosynthetic carbon acquisition in the temperate coral Cladocora caespitosa[J]. Coral Reefs, 2010, 29(1): 21−29. doi: 10.1007/s00338-009-0558-9 [14] Hawkins T D, Krueger T, Becker S, et al. Differential nitric oxide synthesis and host apoptotic events correlate with bleaching susceptibility in reef corals[J]. Coral Reefs, 2014, 33(1): 141−153. doi: 10.1007/s00338-013-1103-4 [15] Kvitt H, Kramarsky-Winter E, Maor-Landaw K, et al. Breakdown of coral colonial form under reduced pH conditions is initiated in polyps and mediated through apoptosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(7): 2082−2086. [16] Chuang P S, Mitarai S. Signaling pathways in the coral polyp bail-out response[J]. Coral Reefs, 2020, 39(6): 1535−1548. doi: 10.1007/s00338-020-01983-x [17] Gösser F, Raulf A, Mosig A, et al. Signaling pathways of heat- and hypersalinity-induced polyp bailout in Pocillopora acuta[J]. Coral Reefs, 2021, 40(6): 1713−1728. doi: 10.1007/s00338-021-02191-x [18] Ornitz D M, Itoh N. The fibroblast growth factor signaling pathway[J]. WIREs Mechanisms of Disease, 2015, 4(3): 215−266. [19] Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer[J]. Nature Reviews Cancer, 2010, 10(2): 116−129. doi: 10.1038/nrc2780 [20] Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy[J]. Nature Reviews Drug Discovery, 2009, 8(3): 235−253. doi: 10.1038/nrd2792 [21] Mason I. Initiation to end point: the multiple roles of fibroblast growth factors in neural development[J]. Nature Reviews Neuroscience, 2007, 8(8): 583−596. doi: 10.1038/nrn2189 [22] 李倩. 山羊FGF1、FGF10和FGF21基因表达特性及其对山羊肌内前体脂肪细胞分化的影响[D]. 成都: 西南民族大学, 2017.Li Qian. The expression characteristics of FGF1, FGF10 and FGF21 and their effects on the differentiation of goat intramuscular preadipocyte[D]. Chengdu: Southwest Minzu University, 2017. [23] Huang Gongkai, Huang Chaocheng, Kang C H, et al. Genetic interference of FGFR3 impedes invasion of upper tract urothelial carcinoma cells by alleviating RAS/MAPK signal activity[J]. International Journal of Molecular Sciences, 2023, 24(2): 1776. doi: 10.3390/ijms24021776 [24] Sarrazin S, Lamanna W C, Esko J D. Heparan sulfate proteoglycans[J]. Cold Spring Harbor Perspectives in Biology, 2011, 3(7): a004952. [25] Matsuo I, Kimura-Yoshida C. Extracellular distribution of diffusible growth factors controlled by heparan sulfate proteoglycans during mammalian embryogenesis[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369(1657): 20130545. doi: 10.1098/rstb.2013.0545 [26] Yasui H, Andoh A, Bamba S, et al. Role of fibroblast growth factor-2 in the expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human intestinal myofibroblasts[J]. Digestion, 2004, 69(1): 34−44. doi: 10.1159/000076545 [27] Shimazu A, Morishita M. Basic fibroblast growth factor induces the expression of matrix metalloproteinase-3 in human periodontal ligament cells through the MEK2 mitogen-activated protein kinase pathway[J]. Journal of Periodontal Research, 2003, 38(2): 122−129. doi: 10.1034/j.1600-0765.2003.01645.x [28] Liu Jianfeng, Crépin M, Liu Jianmiao, et al. FGF-2 and TPA induce matrix metalloproteinase-9 secretion in MCF-7 cells through PKC activation of the Ras/ERK pathway[J]. Biochemical and Biophysical Research Communications, 2002, 293(4): 1174−1182. doi: 10.1016/S0006-291X(02)00350-9 [29] Laudien J, Heran T, Häussermann V, et al. Polyp dropout in a solitary cold-water coral[J]. Coral Reefs, 2021, 40(5): 1657−1665. doi: 10.1007/s00338-021-02148-0 [30] Lirman D. Fragmentation in the branching coral Acropora palmata (Lamarck): growth, survivorship, and reproduction of colonies and fragments[J]. Journal of Experimental Marine Biology and Ecology, 2000, 251(1): 41−57. doi: 10.1016/S0022-0981(00)00205-7 [31] Yu Qiuyu, He Chunlong, Wang Yi, et al. The differential physiological responses to heat stress in the scleractinian coral Pocillopora damicornis are affected by its energy reserve[J]. Marine Environmental Research, 2025, 204: 106966. doi: 10.1016/j.marenvres.2025.106966 [32] 张诗泽, 黄晖, 张浴阳, 等. 鹿回头多孔鹿角珊瑚与丛生盔形珊瑚性腺组织学研究[J]. 生态科学, 2016, 35(1): 41−46. doi: 10.14108/j.cnki.1008-8873.2016.01.006Zhang Shize, Huang Hui, Zhang Yuyang, et al. Histological analyses of the gonad for Acropora millepora and Galaxea fascicularis from Sanya Luhuitou of Hainan Island[J]. Ecological Science, 2016, 35(1): 41−46. doi: 10.14108/j.cnki.1008-8873.2016.01.006 [33] 许朝花, 李惠莲, 岑万, 等. 佛罗里达文昌鱼的染色体标本制备与观察[J]. 福建师范大学学报(自然科学版), 2020, 36(4): 64−69,92.Xu Chaohua, Li Huilian, Cen Wan, et al. Preparation and observation on chromosome of Branchiostoma floridae[J]. Journal of Fujian Normal University (Natural Science Edition), 2020, 36(4): 64−69,92. [34] 周胜杰, 杨其彬, 胡静, 等. 蠵龟异速生长研究[J]. 中国兽医杂志, 2020, 56(1): 97−101.Zhou Shengjie, Yang Qibin, Hu Jing, et al. Allometric growth of Caretta caretta[J]. Chinese Journal of Veterinary Medicine, 2020, 56(1): 97−101. [35] 刘雁. 深圳大鹏半岛海域美丽固边海葵(Exaiptasia diaphana)的生物量与生源要素监测与评估[D]. 上海: 上海海洋大学, 2023.Liu Yan. Monitoring and evaluation of biomass and biogenic elements of Exaiptasia diaphana in the Dapeng Peninsula sea area of Shenzhen[D]. Shanghai: Shanghai Ocean University, 2023. [36] 王尔栋, 李洪武, 陈国华, 等. 叶状蔷薇珊瑚(Montipora foliosa)断枝增殖及环境理化因子调控的研究[J]. 海南师范大学学报(自然科学版), 2012, 25(4): 431−434.Wang Erdong, Li Hongwu, Chen Guohua, et al. Resreach on isolated artificial feeding of Montipora Foliosa and environmental regulation of physical and chemical factors[J]. Journal of Hainan Normal University (Natural Science), 2012, 25(4): 431−434. [37] 彭慧湃. 基于线粒体基因组和超保守元件团块角孔珊瑚系统演化研究[D]. 湛江: 广东海洋大学, 2020.Peng Huipai. Phylogeny of Goniopora lobata based on mitochondrial genome and ultra-conserved elements[D]. Zhanjiang: Guangdong Ocean University, 2020. [38] 杨武夷, 孙馨喆, 张宇, 等. 一种宽吻海豚通讯信号自动分类的方法[J]. 声学学报, 2016, 41(2): 181−188. doi: 10.15949/j.cnki.0371-0025.2016.02.005Yang Wuyi, Sun Xinzhe, Zhang Yu, et al. An automatic classification method for whistles of bottlenose dolphin (Tursiops truncates)[J]. Acta Acustica, 2016, 41(2): 181−188. doi: 10.15949/j.cnki.0371-0025.2016.02.005 [39] 刘臻, 施华宏, 黄宏, 等. 3种抗生素对热带爪蟾胚胎发育的毒性影响[J]. 安全与环境学报, 2011, 11(5): 1−6.Liu Zhen, Shi Huahong, Huang Hong, et al. On the effects of chloramphenicol erythromycin and tetracycline on the growing Xenopus tropicalis embryos[J]. Journal of Safety and Environment, 2011, 11(5): 1−6. [40] Pertea M, Kim D, Pertea G M, et al. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown[J]. Nature Protocols, 2016, 11(9): 1650−1667. doi: 10.1038/nprot.2016.095 [41] Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12): 550. doi: 10.1186/s13059-014-0550-8 [42] Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis[J]. BMC Bioinformatics, 2008, 9(1): 559. doi: 10.1186/1471-2105-9-559 [43] Lesk A M, Chothia C. How different amino acid sequences determine similar protein structures: the structure and evolutionary dynamics of the globins[J]. Journal of Molecular Biology, 1980, 136(3): 225−270. doi: 10.1016/0022-2836(80)90373-3 [44] Richardson J S. The anatomy and taxonomy of protein structure[J]. Advances in Protein Chemistry, 1981, 34: 167−339. [45] Chothia C, Lesk A M. The relation between the divergence of sequence and structure in proteins[J]. The EMBO Journal, 1986, 5(4): 823−826. doi: 10.1002/j.1460-2075.1986.tb04288.x [46] Mohammadi M, Olsen S K, GOETZ R. A protein canyon in the FGF–FGF receptor dimer selects from an à la carte menu of heparan sulfate motifs[J]. Current Opinion in Structural Biology, 2005, 15(5): 506−516. doi: 10.1016/j.sbi.2005.09.002 [47] Kenkel C D, Matz M V. Gene expression plasticity as a mechanism of coral adaptation to a variable environment[J]. Nature Ecology & Evolution, 2016, 1(1): 14. [48] Technau U, Steele R E. Evolutionary crossroads in developmental biology: cnidaria[J]. Development, 2011, 138(8): 1447−1458. doi: 10.1242/dev.048959 [49] Brewer J R, Mazot P, Soriano P. Genetic insights into the mechanisms of Fgf signaling[J]. Genes & Development, 2016, 30(7): 751−771. [50] Xie Yangli, Su Nan, Yang Jing, et al. FGF/FGFR signaling in health and disease[J]. Signal Transduction and Targeted Therapy, 2020, 5(1): 181. doi: 10.1038/s41392-020-00222-7 [51] Harding M J, Nechiporuk A V. Fgfr-Ras-MAPK signaling is required for apical constriction via apical positioning of Rho-associated kinase during mechanosensory organ formation[J]. Development, 2012, 139(17): 3130−3135. doi: 10.1242/dev.082271 [52] Wang Zhaoni, Li Wanshan, Chen Shixing, et al. Role of ADAM and ADAMTS proteases in pathological tissue remodeling[J]. Cell Death Discovery, 2023, 9(1): 447. doi: 10.1038/s41420-023-01744-z [53] Theocharis A D, Skandalis S S, Gialeli C, et al. Extracellular matrix structure[J]. Advanced Drug Delivery Reviews, 2016, 97: 4−27. doi: 10.1016/j.addr.2015.11.001 [54] Vizovišek M, Fonović M, Turk B. Cysteine cathepsins in extracellular matrix remodeling: Extracellular matrix degradation and beyond[J]. Matrix Biology, 2019, 75-76: 141-159. [55] Vidak E, Javoršek U, Vizovišek M, et al. Cysteine cathepsins and their extracellular roles: shaping the microenvironment[J]. Cells, 2019, 8(3): 264. doi: 10.3390/cells8030264 [56] Wang Jian, Chen Leilei, Li Yan, et al. Overexpression of cathepsin Z contributes to tumor metastasis by inducing epithelial-mesenchymal transition in hepatocellular carcinoma[J]. PLoS One, 2011, 6(9): e24967. doi: 10.1371/journal.pone.0024967 [57] Fitzgerald J, Bateman J F. A new FACIT of the collagen family: COL21A1[J]. FEBS Letters, 2001, 505(2): 275−280. doi: 10.1016/S0014-5793(01)02754-5 [58] Song M, Schnettler E, Venkatachalam A, et al. Increased expression of collagen prolyl hydroxylases in ovarian cancer is associated with cancer growth and metastasis[J]. American Journal of Cancer Research, 2023, 13(12): 6051−6062. [59] Keld R, Guo Baoqiang, Downey P, et al. The ERK MAP kinase-PEA3/ETV4-MMP-1 axis is operative in oesophageal adenocarcinoma[J]. Molecular Cancer, 2010, 9(1): 313. doi: 10.1186/1476-4598-9-313 [60] Stamenkovic I. Extracellular matrix remodelling: the role of matrix metalloproteinases[J]. The Journal of Pathology, 2003, 200(4): 448−464. doi: 10.1002/path.1400 [61] Hynes R O. The extracellular matrix: not just pretty fibrils[J]. Science, 2009, 326(5957): 1216−1219. doi: 10.1126/science.1176009 [62] Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease[J]. Nature Reviews Molecular Cell Biology, 2014, 15(12): 786−801. doi: 10.1038/nrm3904 -
下载: