留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于协同进化的多AUV多区域覆盖路径规划

蔡畅 陈丹 蔡磊

蔡畅,陈丹,蔡磊. 基于协同进化的多AUV多区域覆盖路径规划[J]. 海洋学报,2024,46(11):1–10 doi: 10.12284/hyxb2024132
引用本文: 蔡畅,陈丹,蔡磊. 基于协同进化的多AUV多区域覆盖路径规划[J]. 海洋学报,2024,46(11):1–10 doi: 10.12284/hyxb2024132
Cai Chang,Chen Dan,Cai Lei. Multi-AUV multi-regional coverage path planning based on coevolution[J]. Haiyang Xuebao,2024, 46(11):1–10 doi: 10.12284/hyxb2024132
Citation: Cai Chang,Chen Dan,Cai Lei. Multi-AUV multi-regional coverage path planning based on coevolution[J]. Haiyang Xuebao,2024, 46(11):1–10 doi: 10.12284/hyxb2024132

基于协同进化的多AUV多区域覆盖路径规划

doi: 10.12284/hyxb2024132
基金项目: 国家自然科学基金(62071383)。
详细信息
    作者简介:

    蔡畅(1993—),女,河北省辛集市人,博士,主要从事自主水下航行器、覆盖路径规划、多机器人系统方向的研究。 E-mail:caichang@stdu.edu.cn

    通讯作者:

    蔡磊,博士,主要从事交通运输工程研究。 E-mail: caileilei@mail.nwpu.edu.cn

  • 中图分类号: TP249

Multi-AUV multi-regional coverage path planning based on coevolution

  • 摘要: 针对多自主水下航行器(Autonomous Underwater Vehicle, AUV)水下覆盖任务过程中的突发情况,研究了多AUV的覆盖路径重规划问题,提出了一种多机器人−多区域覆盖路径规划(Multi-robot Multi-regional Coverage Path Planning, M2CPP)方法,为可用AUV重新分配未覆盖区域并规划覆盖路径。首先,通过割草机算法确定每个区域中的内部路径和候选入口位置。然后,采用协同进化方法求解最优的区域分配、区域顺序及各区域的最优入口,3个种群协同进化,共同决定所有AUV的完整路径,保证种群多样性,避免陷入局部最优。仿真结果表明,本文方法在根据初始位置和剩余能量为多AUV重规划较短路径的基础上,优化路径结构,保证多AUV工作量均衡,可以较好解决该背景下的路径重规划问题。
  • 图  1  路径结构图

    Fig.  1  Path structure

    图  2  本文提出的多AUV多区域覆盖路径规划方法流程图

    Fig.  2  Flowchart of the proposed path planning method for multi-AUV and multi-area coverage

    图  3  同一区域中不同方向上的两种LM覆盖路径

    Fig.  3  Two types of LM coverage paths in different directions in the same area

    图  4  协同进化方法的总体流程

    Fig.  4  Overall flowchart of the co-evolution method

    图  5  3个种群中的示例个体

    Fig.  5  Example individuals in the three populations

    图  6  交叉、变异、交换和反转4种进化操作

    Fig.  6  Four evolutionary operations: crossover, mutation, swap and inversion

    图  7  仿真初始场景

    Fig.  7  Simulation of the initial scenario

    图  8  由LMCC方法(a)、GA算法(b)和BiCC方法(c)生成的最终路径

    Fig.  8  Final paths generated by the LMCC method (a), GA algorithm (b), and BiCC method (c)

    图  9  本文方法中代价函数值的收敛过程

    Fig.  9  Convergence of cost function values in the proposed method

    表  1  参数设置

    Tab.  1  Parameter settings

    分类 变量 数值
    基本
    参数
    区域个数(Nr 6
    AUV个数(Na 3
    AUV剩余能量(E {0.39, 0.89, 0.65}
    AUV位置(P {(800,2200), (1200 200), (4600 1000)}
    声呐量程(Ws 200
    合作
    协同
    进化
    方法
    参数
    种群规模(Np 100
    种群个数(NP 3
    最大迭代次数(maxIte 400
    交叉概率(Pc 0.2
    变异概率(Pm 0.2
    下载: 导出CSV

    表  2  各AUV的路径长度对比

    Tab.  2  Comparison of the path length of each AUV

    本文方法 GA BiCC
    AUV $A_1 $ 2248 5540 10180
    AUV $A_2 $ 9738 12640 1133
    AUV $A_3 $ 5978 9218 5978
    总长度 17964 27398 17291
    下载: 导出CSV

    表  3  本文方法得到的各AUV预期工作量、实际工作量和工作量偏差

    Tab.  3  The expected workload, actual workload and workload deviation of each AUV obtained by the proposed method

    预期工作量 实际工作量 工作量偏差
    AUV $A_1 $ 0.202 0.125 0.077
    AUV $A_2 $ 0.461 0.542 0.081
    AUV $A_3 $ 0.337 0.333 0.004
    下载: 导出CSV

    表  4  平均工作量偏差和平均$ {H}_{3} $对比

    Tab.  4  Comparison of average workload deviation and average $ {H}_{3} $

    本文方法 GA BiCC
    平均工作量偏差 0.0540 0.0002 0.2637
    平均$ {H}_{3} $ 0.1360 0.4553 0.1564
    AUV $A_1 $ 0.067
    AUV $A_2 $ 0.127
    AUV $A_3 $ 0.214
    下载: 导出CSV
  • [1] 周晶, 司玉林, 林渊, 等. 海底AUV关键技术综述[J]. 海洋学报, 2023, 45(10): 1−12.

    Zhou Jing, Si Yulin, Lin Yuan, et al. A review of subsea AUV technology[J]. Haiyang Xuebao, 2023, 45(10): 1−12.
    [2] Cai Chang, Chen Jianfeng, Yan Qingli, et al. A prior information–based coverage path planner for underwater search and rescue using autonomous underwater vehicle (AUV) with side–scan sonar[J]. IET Radar, Sonar & Navigation, 2022, 16(7): 1225-1239.
    [3] 黄琰, 李岩, 俞建成, 等. AUV智能化现状与发展趋势[J]. 机器人, 2020, 42(2): 215−231.

    Huang Yan, Li Yan, Yu Jiancheng, et al. State-of-the-art and development trends of AUV intelligence[J]. Robot, 2020, 42(2): 215−231.
    [4] Matos A, Martins A, Dias A, et al. Multiple robot operations for maritime search and rescue in euRathlon 2015 competition[C]//Proceedings of the OCEANS 2016 - Shanghai. Shanghai: IEEE, 2016.
    [5] 朱大奇, 胡震. 深海潜水器研究现状与展望[J]. 安徽师范大学学报(自然科学版), 2018, 41(3): 205−216.

    Zhu Daqi, Hu Zhen. Research status and prospect of deep-sea underwater vehicle[J]. Journal of Anhui Normal University (Natural Science), 2018, 41(3): 205−216.
    [6] Ai Bo, Jia Maoxin, Xu Hanwen, et al. Coverage path planning for maritime search and rescue using reinforcement learning[J]. Ocean Engineering, 2021, 241: 110098.
    [7] Song Junnan, Gupta S. CARE: cooperative autonomy for resilience and efficiency of robot teams for complete coverage of unknown environments under robot failures[J]. Autonomous Robots, 2020, 44(3/4): 647−671.
    [8] Sun Chun, Tang Jingtao, Zhang Xinyu. FT-MSTC*: an efficient fault tolerance algorithm for multi-robot coverage path planning[C]//Proceedings of 2021 IEEE International Conference on Real-time Computing and Robotics. Xining: IEEE, 2021.
    [9] Yazici A, Kirlik G, Parlaktuna O, et al. A dynamic path planning approach for multirobot sensor-based coverage considering energy constraints[J]. IEEE Transactions on Cybernetics, 2014, 44(3): 305−314.
    [10] Xie Junfei, Carrillo L R G, Jin Lei. An integrated traveling salesman and coverage path planning problem for unmanned aircraft systems[J]. IEEE Control Systems Letters, 2019, 3(1): 67−72. doi: 10.1109/LCSYS.2018.2851661
    [11] Xie Junfei, Chen Jun. Multiregional coverage path planning for multiple energy constrained UAVs[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 17366−17381. doi: 10.1109/TITS.2022.3160402
    [12] Kim G. Multi-agent deep reinforcement learning for multi-regional coverage path planning[D/OL]. Ulsan: Ulsan National Institute of Science and Technology, 2021[引用日期].网址.

    Kim G. Multi-agent deep reinforcement learning for multi-regional coverage path planning[D/OL]. Ulsan: Ulsan National Institute of Science and Technology, 2021[引用日期].网址.
    [13] Shao Xianxin, Gong Yuejiao, Zhan Zhihui, et al. Bipartite cooperative coevolution for energy-aware coverage path planning of UAVs[J]. IEEE Transactions on Artificial Intelligence, 2022, 3(1): 29−42. doi: 10.1109/TAI.2021.3103143
    [14] 金磊磊, 梁红, 杨长生. 基于卷积神经网络的水下目标声呐图像识别方法[J]. 西北工业大学学报, 2021, 39(2): 285−291. doi: 10.1051/jnwpu/20213920285

    Jin Leilei, Liang Hong, Yang Changsheng. Sonar image recognition of underwater target based on convolutional neural network[J]. Journal of Northwestern Polytechnical University, 2021, 39(2): 285−291. doi: 10.1051/jnwpu/20213920285
    [15] Zhou Hexiong, Zeng Zheng, Lian Lian. Adaptive re-planning of AUVs for environmental sampling missions: a fuzzy decision support system based on multi-objective particle swarm optimization[J]. International Journal of Fuzzy Systems, 2018, 20(2): 650−671. doi: 10.1007/s40815-017-0398-7
    [16] Viet H H, Dang V H, Choi S, et al. BoB: an online coverage approach for multi-robot systems[J]. Applied Intelligence, 2015, 42(2): 157−173. doi: 10.1007/s10489-014-0571-8
    [17] Kapoutsis A C, Chatzichristofis S A, Kosmatopoulos E B. DARP: divide areas algorithm for optimal multi-robot coverage path planning[J]. Journal of Intelligent & Robotic Systems, 2017, 86(3/4): 663−680.
    [18] Connell D, Manh La H. Extended rapidly exploring random tree–based dynamic path planning and replanning for mobile robots[J]. International Journal of Advanced Robotic Systems, 2018, 15(3): 255903605.
    [19] 赵荞荞, 张立川, 刘禄, 等. 水下仿生机器人集群节能关键技术综述[J]. 西北工业大学学报, 2022, 40(3): 576−583. doi: 10.3969/j.issn.1000-2758.2022.03.013

    Zhao Qiaoqiao, Zhang Lichuan, Liu Lu, et al. Review on energy-saving key technologies of underwater bionic robot swarm[J]. Journal of Northwestern Polytechnical University, 2022, 40(3): 576−583. doi: 10.3969/j.issn.1000-2758.2022.03.013
    [20] Choset H. Coverage of known spaces: the boustrophedon cellular decomposition[J]. Autonomous Robots, 2000, 9(3): 247−253. doi: 10.1023/A:1008958800904
    [21] Galceran E, Carreras M. A survey on coverage path planning for robotics[J]. Robotics and Autonomous Systems, 2013, 61(12): 1258−1276.
    [22] Kapetanović N, Mišković N, Tahirović A, et al. A side-scan sonar data-driven coverage planning and tracking framework[J]. Annual Reviews in Control, 2018, 46: 268−280. doi: 10.1016/j.arcontrol.2018.10.012
    [23] Lakshmi M D, Murugan S S. Keypoint-based mapping analysis on transformed side scan sonar images[J]. Multimedia Tools and Applications, 2020, 79(35/36): 26703−26733.
    [24] Wu Meng, Zhu Xiaomin, Ma Li, et al. Torch: strategy evolution in swarm robots using heterogeneous–homogeneous coevolution method[J]. Journal of Industrial Information Integration, 2022, 25: 100239.
    [25] Miguel Antonio L, Coello Coello C A. Coevolutionary multiobjective evolutionary algorithms: survey of the state-of-the-art[J]. IEEE Transactions on Evolutionary Computation, 2018, 22(6): 851−865. doi: 10.1109/TEVC.2017.2767023
    [26] Wang Boqun, Zhang Hailong, Nie Jun, et al. Multipopulation genetic algorithm based on GPU for solving TSP problem[J]. Mathematical Problems in Engineering, 2020, 2020: 1398595.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  41
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-02
  • 修回日期:  2024-11-04
  • 网络出版日期:  2024-11-21

目录

    /

    返回文章
    返回