留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

透空式梯形礁体对孤立波复杂岛礁水动力特性影响的试验研究

喻仞石 屈科 王超 刘叶文雅 李玮

喻仞石,屈科,王超,等. 透空式梯形礁体对孤立波复杂岛礁水动力特性影响的试验研究[J]. 海洋学报,2024,46(10):1–9 doi: 10.12284/hyxb2024113
引用本文: 喻仞石,屈科,王超,等. 透空式梯形礁体对孤立波复杂岛礁水动力特性影响的试验研究[J]. 海洋学报,2024,46(10):1–9 doi: 10.12284/hyxb2024113
Yu Renshi,Qu Ke,Wang Chao, et al. Experimental study on the influence of permeable trapezoidal reef on the hydrodynamic characteristics of solitary wave complex reefs[J]. Haiyang Xuebao,2024, 46(10):1–9 doi: 10.12284/hyxb2024113
Citation: Yu Renshi,Qu Ke,Wang Chao, et al. Experimental study on the influence of permeable trapezoidal reef on the hydrodynamic characteristics of solitary wave complex reefs[J]. Haiyang Xuebao,2024, 46(10):1–9 doi: 10.12284/hyxb2024113

透空式梯形礁体对孤立波复杂岛礁水动力特性影响的试验研究

doi: 10.12284/hyxb2024113
基金项目: 国家重点研发计划课题(2022YFC3103601);国家自然科学基金重点项目(51839002);湖南省自然科学基金(2021JJ20043)。
详细信息
    作者简介:

    喻仞石(1998—),男,硕士,主要从事波浪水动力研究,E-mail:2741475975@qq.com

    通讯作者:

    屈科(1985—),男,副教授,主要从事计算流体力学、海岸工程、海洋工程研究。E-mail:kqu@csust.edu.cn

  • 中图分类号: TV139.2

Experimental study on the influence of permeable trapezoidal reef on the hydrodynamic characteristics of solitary wave complex reefs

  • 摘要: 珊瑚岛礁地貌作为海岸的天然屏障,近年来由于人类活动的影响产生了不可逆的破坏。失去天然屏障的岛屿如何抵抗极端波浪的侵蚀成为了迫在眉睫的问题。本文基于波浪水槽物理模型试验,从入射波高、礁坪水深、孔隙半径等参数展开对复杂珊瑚岛礁地形附近的孤立波水动力特性研究,并从能量的角度揭示人工礁体的消波机理。试验结果表明:透空式梯形礁体能够对波浪能具有削弱作用,并加快波浪破碎;受礁体的影响波浪在通过礁体后发生局部减水,且可以降低后续在礁坪上传播的有效水深;透射系数和反射系数均随入射波高的增大而增大;随礁坪水深的增大反射系数减小,透射系数增大;反射系数随孔隙半径的增大而减小,透射系数无明显规律。透空式梯形礁体可以有效降低波浪的透射强度,实现对岛屿的防护,并且透空式梯形礁体在削弱波浪能量的同时还可以兼顾生态友好、减少结构物受力、为水体交换提供空间。
  • 图  1  波浪水槽布置

    Fig.  1  Layout of wave flume

    图  2  透空式梯形礁体及布置

    Fig.  2  Permeable trapezoidal reef and layout

    图  3  不同时刻下的破碎波变化

    Fig.  3  The variation of breaking wave at different times

    图  4  不同入射波高下的相对波高沿程分布

    Fig.  4  The relative wave height distribution along the path under different incident wave heights

    图  5  有无礁体的地形下礁前斜坡自由水面

    Fig.  5  Free water surface of pre-reef slope under topography with or without reefs

    图  6  礁后斜坡爬高随入射波高的变化、局部波高最大降幅随入射波高的变化

    Fig.  6  The variation of the climbing height of the slope behind the reef with the incident wave height and the variation of the maximum decrease of the local wave height with the incident wave height

    图  7  不同礁坪水深下相对波高沿程变化

    Fig.  7  Relative wave height variation along the course under different reef flat water depths

    图  8  局部波高最大降幅随礁坪水深的变化

    Fig.  8  Change of relative wave height drop under different reef flat water depths

    图  9  测点WG1和WG17的水面时程曲线

    Fig.  9  Water surface time history curves of WG1 and WG17 at measuring points WG1 and WG17

    图  10  不同孔隙半径和入射波高下反射系数、透射系数的变化

    Fig.  10  The variation of reflection coefficient and transmission coefficient under different pore radius and incident wave height

    图  11  有无礁体地形在不同礁坪水深下透射系数(CT)和反射系数(CR)变化

    ●、○表示有礁体地形的反射系数和透射系数;◆、◇表示无礁体地形的反射系数和透射系数

    Fig.  11  Changes of transmission coefficient (CT) and reflection coefficient (CR) of reef or non-reef terrain under different reef flat water depths

    ●, ○Represents the transmission coefficient and reflection coefficient with reef terrain;◆, ◇Reflection the transmission coefficients and reflection coefficient of non-reefs terrain

    表  1  测点位置

    Tab.  1  Position of measuring points

    测点编号 WG1 WG2 WG3 WG4 WG5 WG6 WG7 WG8 WG9
    测点位置/m 12.52 13.121 13.679 23.23 23.515 23.8 24.085 24.37 24.655
    测点编号 WG10 WG11 WG12 WG13 WG14 WG15 WG16 WG17 WG18
    测点位置/m 25.33 25.845 26.34 26.9 27.461 28.02 28.582 29.14 29.7
    下载: 导出CSV

    表  2  试验工况设置

    Tab.  2  Experimental condition setting

    工况hr/mH/m地形类型r/m
    A100.06无礁体0
    A20.0250.04无礁体0
    A30.0250.06无礁体0
    A40.0250.08无礁体0
    A50.0250.1无礁体0
    A60.050.06无礁体0
    A70.0750.06无礁体0
    B100.06梯形礁体0.0075
    B20.0250.04梯形礁体0.005
    B30.0250.06梯形礁体0.005
    B40.0250.08梯形礁体0.005
    B50.0250.1梯形礁体0.005
    B60.0250.04梯形礁体0.0075
    B70.0250.06梯形礁体0.0075
    B80.0250.08梯形礁体0.0075
    B90.0250.1梯形礁体0.0075
    B100.0250.04梯形礁体0.001
    B110.0250.06梯形礁体0.001
    B120.0250.08梯形礁体0.001
    B130.0250.1梯形礁体0.001
    B140.050.06梯形礁体0.0075
    B150.0750.06梯形礁体0.0075
    下载: 导出CSV
  • [1] Cho Y S, Park K Y, Lin T H. Run-up heights of nearshore tsunamis based on quadtree grid system[J]. Ocean Engineering, 2004, 31(8/9): 1093−1109.
    [2] Synolakis C E, Bernard E N. Tsunami science before and beyond Boxing Day 2004[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 364(1845): 2231−2265. doi: 10.1098/rsta.2006.1824
    [3] Kubota T, Saito T, Nishida K. Global fast-traveling tsunamis driven by atmospheric Lamb waves on the 2022 Tonga eruption[J]. Science, 2022, 377(6601): 91−94. doi: 10.1126/science.abo4364
    [4] Lynett P, McCann M, Zhou Zili, et al. Diverse tsunamigenesis triggered by the Hunga Tonga-Hunga Ha’apai eruption[J]. Nature, 2022, 609(7928): 728−733. doi: 10.1038/s41586-022-05170-6
    [5] Ren Zhiyuan, Higuera P, Liu P L F. On tsunami waves induced by atmospheric pressure shock waves after the 2022 Hunga Tonga-Hunga Ha'apai volcano eruption[J]. Journal of Geophysical Research: Oceans, 2023, 128(4): e2022JC019166. doi: 10.1029/2022JC019166
    [6] Yao Yu, He Tiancheng, Deng Zhengzhi, et al. Large eddy simulation modeling of tsunami-like solitary wave processes over fringing reefs[J]. Natural Hazards and Earth System Sciences, 2019, 19(6): 1281−1295. doi: 10.5194/nhess-19-1281-2019
    [7] 姚宇, 袁万成, 杜睿超, 等. 岸礁礁冠对波浪传播变形及增水影响的实验研究[J]. 热带海洋学报, 2015, 34(6): 19−25. doi: 10.11978/2015031

    Yao Yu, Yuan Wancheng, Du Ruichao, et al. Experimental study of reef crest's effects on wave transformation and wave-induced setup over fringing reefs[J]. Journal of Tropical Oceanography, 2015, 34(6): 19−25. doi: 10.11978/2015031
    [8] Young I R. Wave transformation over coral reefs[J]. Journal of Geophysical Research: Oceans, 1989, 94(C7): 9779−9789. doi: 10.1029/JC094iC07p09779
    [9] Titov V, Rabinovich A B, Mofjeld H O, et al. The global reach of the 26 December 2004 Sumatra tsunami[J]. Science, 2005, 309(5743): 2045−2048. doi: 10.1126/science.1114576
    [10] Danielsen F, Sørensen M K, Olwig M F, et al. The Asian tsunami: a protective role for coastal vegetation[J]. Science, 2005, 310(5748): 643−643. doi: 10.1126/science.1118387
    [11] “中国工程科技2035发展战略研究”海洋领域课题组. 中国海洋工程科技2035发展战略研究[J]. 中国工程科学, 2017, 19(1): 108−117. doi: 10.15302/J-SSCAE-2017.01.016

    Task Force for the Research on China’s Engineering Science and Technology Development Strategy 2035 Marine Research Group. Development strategy for China's marine engineering science and technology to 2035[J]. Strategic Study of CAE, 2017, 19(1): 108−117. doi: 10.15302/J-SSCAE-2017.01.016
    [12] Fang Kezhao, Xiao Li, Liu Zhongbo, et al. Experiment and RANS modeling of solitary wave impact on a vertical wall mounted on a reef flat[J]. Ocean Engineering, 2022, 244: 110384. doi: 10.1016/j.oceaneng.2021.110384
    [13] 刘铁威, 屈科, 黄竞萱, 等. 孤立波在透水岸礁上水动力特性数值模拟研究[J]. 水动力学研究与进展, 2021, 36(2): 180−191.

    Liu Tiewei, Qu Ke, Huang Jingxuan, et al. Numerical investigation of hydrodynamic characteristics of solitary wave over permeable fringing reef[J]. Chinese Journal of Hydrodynamics, 2021, 36(2): 180−191.
    [14] Yao Yu, He Fang, Tang Zhengjiang, et al. A study of tsunami-like solitary wave transformation and run-up over fringing reefs[J]. Ocean Engineering, 2018, 149: 142−155. doi: 10.1016/j.oceaneng.2017.12.020
    [15] 袁涛, 施奇佳, 姚宇, 等. 人工礁研究进展与展望[J]. 热带海洋学报, 2023, 42(1): 192−203. doi: 10.11978/2022027

    Yuan Tao, Shi Qijia, Yao Yu, et al. Research progresses and prospects of the artificial reefs[J]. Journal of Tropical Oceanography, 2023, 42(1): 192−203. doi: 10.11978/2022027
    [16] Liu T L, Su D T. Numerical analysis of the influence of reef arrangements on artificial reef flow fields[J]. Ocean Engineering, 2013, 74: 81−89. doi: 10.1016/j.oceaneng.2013.09.006
    [17] 于定勇, 王逢雨, 张彩霞, 等. 梯型台人工鱼礁体流场效应数值研究[J]. 中国海洋大学学报, 2020, 50(12): 135−143.

    Yu Dingyong, Wang Fengyu, Zhang Caixia, et al. Research on flow field around trapezoidal artificial reefs[J]. Periodical of Ocean University of China, 2020, 50(12): 135−143
    [18] 成泽毅, 叶灿, 高宇, 等. 不同布设间距和来流速度下方型人工鱼礁上升流效应的数值模拟[J]. 海洋与湖沼, 2023, 54(3): 665−678. doi: 10.11693/hyhz20221000262

    Cheng Zeyi, Ye Can, Gao Yu, et al. Scheme analysis of upwelling effects in artificial reefs in different layouts[J]. Oceanologia et Limnologia Sinica, 2023, 54(3): 665−678. doi: 10.11693/hyhz20221000262
    [19] Zhu Gancheng, Ren Bing, Wen Hongjie, et al. Analytical and experimental study of wave setup over permeable coral reef[J]. Applied Ocean Research, 2019, 90: 101859. doi: 10.1016/j.apor.2019.101859
    [20] 刘同渝. 人工鱼礁的流态效应[J]. 水产科技, 2003(6): 43−44.

    Liu Tongyu. Flow pattern effect of artificial reefs[J]. Fishery Science and Technology, 2003(6): 43−44. (查阅网上资料, 未找到本条文献英文翻译, 请确认)
    [21] 王旭, 屈科, 门佳. 透水珊瑚岸礁亚重力波水动力特性数值研究[J]. 海洋学报, 2023, 45(9): 152−167.

    Wang Xu, Qu Ke, Men Jia. Numerical study on infragravity wave hydrodynamics of permeable fringing reef[J]. Haiyang Xuebao, 2023, 45(9): 152−167.
    [22] Neelamani S, Rajendran R. Wave interaction with T-type breakwaters[J]. Ocean Engineering, 2002, 29(2): 151−175. doi: 10.1016/S0029-8018(00)00060-3
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  86
  • HTML全文浏览量:  32
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-09
  • 修回日期:  2024-09-23
  • 网络出版日期:  2024-09-30

目录

    /

    返回文章
    返回