留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一个快速计算稳态周期水波的新方法

张洋

张洋. 一个快速计算稳态周期水波的新方法[J]. 海洋学报,2024,46(10):88–97 doi: 10.12284/hyxb2024109
引用本文: 张洋. 一个快速计算稳态周期水波的新方法[J]. 海洋学报,2024,46(10):88–97 doi: 10.12284/hyxb2024109
Zhang Yang. A new method for fast calculation of steady periodic water waves[J]. Haiyang Xuebao,2024, 46(10):88–97 doi: 10.12284/hyxb2024109
Citation: Zhang Yang. A new method for fast calculation of steady periodic water waves[J]. Haiyang Xuebao,2024, 46(10):88–97 doi: 10.12284/hyxb2024109

一个快速计算稳态周期水波的新方法

doi: 10.12284/hyxb2024109
基金项目: 福建省中青年教师教育科研项目(科技类)(JAT220344);厦门理工学院高层次人才科研启动项目(YKJ22043R)。
详细信息
    作者简介:

    张洋(1989—),男,辽宁省朝阳市人,讲师,主要从事海洋工程研究工作。E-mail:zhangyanggsz@163.com

A new method for fast calculation of steady periodic water waves

  • 摘要: 本文给出一个利用参数化公式快速计算稳态周期水波波面升高的方法。利用ABR三角级数近似表达稳态周期水波的波面升高,并通过自由表面边界条件数值计算得到ABR级数中的非线性参数数值。采用ABR级数的优点在于其形式简单、仅包含一个待定参数,便于研究该参数与波浪要素之间的参数化关系式,进而快速计算波面升高。针对不同波浪理论(Stokes波理论和椭圆余弦波理论)适用范围情况,将数值计算结果与Stokes波理论解析解、椭圆余弦波理论解析解以及傅里叶方法给出的数值精确解进行对比,讨论了新数值方法计算结果的适用性。此外,给出了利用波陡(深水情况)或厄塞尔数(非深水情况)计算ABR级数中非线性参数的拟合表达式,以便于通过当地波浪要素快速预报波面升高。最后,给出利用波面升高计算时均波浪非线性相关输沙率的方法,以便于实际工程应用。
  • 图  1  各物理量定义示意图

    Fig.  1  Definition sketch for a wave

    图  2  有限水深情况新方法(黑色实线)、五阶Stokes波理论(红色实线)与傅里叶方法(黑色圆圈)计算波面升高

    Fig.  2  Free surface elevations calculated by the new method (black solid line), fifth-order Stokes wave theory (red solid line), and Fourier approximation (black circle) for finite water depth

    图  3  深水情况新方法(黑色实线)、五阶Stokes波理论(红色实线)与傅里叶方法(黑色圆圈)计算波面升高

    Fig.  3  Free surface elevations calculated by the new method (black solid line), fifth-order Stokes wave theory (red solid line), and Fourier approximation (black circle) for deep water depth

    图  4  新方法(黑色实线)、一阶椭圆余弦波理论(红色实线)与傅里叶方法(黑色圆圈)计算波面升高

    Fig.  4  Free surface elevations calculated by the new method (black solid line), cnoidal wave theory (red solid line), and Fourier approximation (black circle)

    图  5  新方法(黑色实线)、五阶Stokes波理论(红色实线)、一阶椭圆余弦波理论(绿色实线)与傅里叶方法(黑色圆圈)计算波面升高

    Fig.  5  Free surface elevations calculated by the new method (black solid line), fifth-order Stokes wave theory (red solid line), cnoidal wave theory (green solid line), and Fourier approximation (black circle)

    图  6  不同波浪要素对应新方法计算结果误差

    Fig.  6  Errors of the new method for different wave parameters

    图  7  非线性参数r与波陡ε或厄塞尔数Ur拟合曲线

    Fig.  7  Fitting curves if the nonlinearity parameter r versus wave slope ε or the Ursell number Ur

    图  8  快速计算波面升高流程图

    Fig.  8  Flow chart for fast calculation of free surface elevations

    图  9  q1q2数值结果和拟合曲线

    Fig.  9  Numerical results of q1 and q2 and the corresponding fitting curves

    表  1  各波况对应r数值计算结果

    Tab.  1  Numerical results of r for different wave cases

    水深h/m 周期T/s 波高H/m r
    1 2.5 0.1 0.130
    1 2.5 0.2 0.265
    1 2.5 0.3 0.407
    1 2.5 0.4 0.547
    1 10 0.1 0.798
    1 10 0.2 0.943
    1 10 0.3 0.968
    1 10 0.4 0.977
    10 2.5 0.1 4.65×10−2
    10 2.5 0.2 9.56×10−2
    10 2.5 0.3 0.138
    10 2.5 0.4 0.191
    下载: 导出CSV

    表  2  q1q2拟合表达式中系数取值

    Tab.  2  Values of parameters for the fitting expressions of q1 and q2

    系数 数值 系数 数值
    $ {a_1} $ 0.214 $ {a_6} $ 0.274
    $ {a_2} $ 1.804 $ {a_7} $ 2.628
    $ {a_3} $ −6.444 $ {a_8} $ −9.331
    $ {a_4} $ 9.158 $ {a_9} $ 13.243
    $ {a_5} $ −4.550 $ {a_{10}} $ −6.523
    下载: 导出CSV
  • [1] Gerstner F. Theorie der wellen: Abhandlungen der Koniglichen Bohmischen Gesellschaft der Wissenschaften, Prague; also, Gilbert's[J]. Annalen der Physik, 1802, 32: 412−445. (查阅网上资料, 不确定修改是否正确, 请确认)
    [2] Stokes G G. On the theory of oscillatory waves[J]. Transactions of the Cambridge Philosophical Society, 1847, 8: 441−455.
    [3] Fenton J D. A fifth-order stokes theory for steady waves[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1985, 111(2): 216−234. doi: 10.1061/(ASCE)0733-950X(1985)111:2(216)
    [4] Horikawa K. Nearshore Dynamics and Coastal Processes: Theory, Measurement, and Predictive Models[M]. Tokyo: University of Tokyo Press, 1988.
    [5] Zhao Hongjun, Song Zhiyao, Li Ling, et al. On the fifth-order stokes solution for steady water waves[J]. China Ocean Engineering, 2016, 30(5): 794−810. doi: 10.1007/s13344-016-0051-5
    [6] Zhao Kuifeng, Liu P L F. On stokes wave solutions[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478(2258): 20210732. doi: 10.1098/rspa.2021.0732
    [7] Fang Haiqi, Liu P L F, Tang Lian, et al. The theory of fifth-order Stokes waves in a linear shear current[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2023, 479(2280): 20230565. doi: 10.1098/rspa.2023.0565
    [8] Korteweg D J, De Vries G. XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1895, 39(240): 422−443. doi: 10.1080/14786449508620739
    [9] Fenton J D. A high-order cnoidal wave theory[J]. Journal of Fluid Mechanics, 1979, 94(1): 129−161. doi: 10.1017/S0022112079000975
    [10] Chappelear J E. Direct numerical calculation of wave properties[J]. Journal of Geophysical Research, 1961, 66(2): 501−508. doi: 10.1029/JZ066i002p00501
    [11] Dean R G. Stream function representation of nonlinear ocean waves[J]. Journal of Geophysical Research, 1965, 70(18): 4561−4572. doi: 10.1029/JZ070i018p04561
    [12] Rienecker M M, Fenton J D. A Fourier approximation method for steady water waves[J]. Journal of Fluid Mechanics, 1981, 104: 119−137. doi: 10.1017/S0022112081002851
    [13] Zhao Hongjun, Song Zhiyao, Li Ling, et al. On the Fourier approximation method for steady water waves[J]. Acta Oceanologica Sinica, 2014, 33(5): 37−47. doi: 10.1007/s13131-014-0470-1
    [14] Abreu T, Silva P A, Sancho F, et al. Analytical approximate wave form for asymmetric waves[J]. Coastal Engineering, 2010, 57(7): 656−667. doi: 10.1016/j.coastaleng.2010.02.005
    [15] Ruessink B G, Ramaekers G, Van Rijn L C. On the parameterization of the free-stream non-linear wave orbital motion in nearshore morphodynamic models[J]. Coastal Engineering, 2012, 65: 56−63. doi: 10.1016/j.coastaleng.2012.03.006
    [16] Svendsen I A. Mass flux and undertow in a surf zone[J]. Coastal Engineering, 1984, 8(4): 347−365. doi: 10.1016/0378-3839(84)90030-9
    [17] Lé Méhauté B. An introduction to hydrodynamics and water waves[M]. New York: Springer-Verlag, 1976.
    [18] Zhao Kuifeng, Wang Yufei, Liu P L F. A guide for selecting periodic water wave theories-Le Méhauté (1976)’s graph revisited[J]. Coastal Engineering, 2024, 188: 104432. doi: 10.1016/j.coastaleng.2023.104432
    [19] 邹志利. 水波理论及其应用[M]. 北京: 科学出版社, 2005.

    Zou Zhili. Water Wave Theories and Their Applications[M]. Beijing: Science Press, 2005.
    [20] Bailard J A, Inman D L. An energetics bedload model for a plane sloping beach: local transport[J]. Journal of Geophysical Research: Oceans, 1981, 86(C3): 2035−2043. doi: 10.1029/JC086iC03p02035
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  49
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-05
  • 录用日期:  2024-09-27
  • 修回日期:  2024-09-20
  • 网络出版日期:  2024-09-29
  • 刊出日期:  2024-10-30

目录

    /

    返回文章
    返回