留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全球洋区浮游植物水华物候学特征时空变化的遥感分析

王俊涛 孙德勇 王胜强 张海龙 袁逸博 何宜军

王俊涛,孙德勇,王胜强,等. 全球洋区浮游植物水华物候学特征时空变化的遥感分析[J]. 海洋学报,2024,46(10):120–129 doi: 10.12284/hyxb2024104
引用本文: 王俊涛,孙德勇,王胜强,等. 全球洋区浮游植物水华物候学特征时空变化的遥感分析[J]. 海洋学报,2024,46(10):120–129 doi: 10.12284/hyxb2024104
Wang Juntao,Sun Deyong,Wang Shengqiang, et al. Remote sensing analysis of spatial and temporal variations of phytoplankton bloom phenological characteristics in global ocean[J]. Haiyang Xuebao,2024, 46(10):120–129 doi: 10.12284/hyxb2024104
Citation: Wang Juntao,Sun Deyong,Wang Shengqiang, et al. Remote sensing analysis of spatial and temporal variations of phytoplankton bloom phenological characteristics in global ocean[J]. Haiyang Xuebao,2024, 46(10):120–129 doi: 10.12284/hyxb2024104

全球洋区浮游植物水华物候学特征时空变化的遥感分析

doi: 10.12284/hyxb2024104
基金项目: 国家自然科学基金项目(42176179,42176181,42106176);江苏省基础研究计划(自然科学基金)项目(BK20211289,BK20210667);自然资源部海岸带开发与保护重点实验室开放基金项目(2021CZEPK02);遥感科学国家重点实验室开放基金项目(OFSLRSS202103);上海勘测设计研究院有限公司科标业(2021FD(8)-028)。
详细信息
    作者简介:

    王俊涛(1999—),男,江苏省南京市人,硕士研究生,从事海洋遥感应用研究。E-mail:17721570486@163.cn

    通讯作者:

    孙德勇,男,教授,主要从事水体光学、水色遥感。E-mail:sundeyong@nuist.edu.cn

  • 中图分类号: Q178.53

Remote sensing analysis of spatial and temporal variations of phytoplankton bloom phenological characteristics in global ocean

  • 摘要: 洋区浮游植物水华是指浮游植物快速繁殖致使水体生物量升高的年际周期性现象,对海洋生物化学循环起着重要作用。然而,目前对全球海洋浮游植物水华时空变化特征及其对环境的响应机制仍需深入探究。本文基于2003−2022年MODIS-Aqua(Moderate Resolution Imaging Spectroradiometer)的叶绿素a浓度产品,提取了全球海洋浮游植物水华指数(水华持续时间比和水华强度),分析了其时空变化特征、趋势和环境因子间的相关性。结果表明:全球海洋水华指数及其趋势变化的分布具有显著的季节差异和纬向差异,北半球高纬度海域的水华主要出现在4−10月,中低纬度海域的水华主要出现在11月至翌年3月,而南半球高纬度海域的水华往往开始于11月并持续至翌年3月,中低纬度海域的水华则主要出现在5−9月;水华持续时间比和水华强度主要在北太平洋中低纬海域存在下降趋势,在南半球中高纬海域存在上升趋势;水华指数的分布和趋势都受到环境因子的调控,其中海表面温度和光合有效辐射在高纬度海域对水华有促进作用,在中低纬海域对水华起抑制作用,而海表面风速在高纬度海域对水华起抑制作用,在中低纬度海域对水华起促进作用。
  • 图  1  2003−2022年全球海洋叶绿素a的年均数据有效率分布特征

    Fig.  1  Distribution characteristic of averaged PEs of chlorophyll a in the global ocean from 2003 to 2022

    图  2  2003−2022年全球海洋水华持续时间比空间分布

    Fig.  2  The distribution of RD in global ocean from 2003 to 2022

    图  3  2003−2022年全球海洋各月水华持续时间比的空间分布

    Fig.  3  Distribution of RD for every month in global ocean from 2003 to 2022

    图  4  2003−2022年全球海洋年均水华强度空间分布

    Fig.  4  The distribution of averaged BI in global ocean from 2003 to 2022

    图  5  2003−2022年全球海洋各月水华强度均值的空间分布

    Fig.  5  Distribution of averaged RD for every month in global ocean from 2003 to 2022

    图  6  2003−2022年全球海洋水华持续时间比趋势(p < 0.05)

    Fig.  6  The trend of RD in global ocean from 2003 to 2022(p < 0.05)

    图  7  2003−2022年全球海洋各月水华持续时间比趋势(p < 0.05)

    Fig.  7  The trends of RD for every month in global ocean from 2003 to 2022(p < 0.05)

    图  8  2003−2022年全球海洋水华强度趋势(p < 0.05)

    Fig.  8  The trend of BI in global ocean from 2003 to 2022(p < 0.05)

    图  9  2003−2022年全球海洋各月水华强度趋势(p < 0.05)

    Fig.  9  The trends of BI for every month in global ocean from 2003 to 2022(p < 0.05)

    图  10  水华持续时间比、水华强度与环境因子间的相关性:a、c、e分别为RD与SST、PAR、WS的相关性关系,b、d、f分别为BI与SST、PAR、WS的相关性关系

    Fig.  10  The correlation between RD, BI and environmental factors: a, c and e are the correlations between RD and SST, PAR and WS, b, d and f are the correlations between BI and SST, PAR and WS

  • [1] Field C B, Behrenfeld M J, Randerson J T, et al. Primary production of the biosphere: integrating terrestrial and oceanic components[J]. Science, 1998, 281(5374): 237−240. doi: 10.1126/science.281.5374.237
    [2] Racault M F, Le Quéré C, Buitenhuis E, et al. Phytoplankton phenology in the global ocean[J]. Ecological Indicators, 2012, 14(1): 152−163. doi: 10.1016/j.ecolind.2011.07.010
    [3] Sigman D M, Hain M P. The biological productivity of the ocean[J]. Nature Education Knowledge, 2012, 3(10): 21. (查阅网上资料, 请确认修改是否正确

    Sigman D M, Hain M P. The biological productivity of the ocean[J]. Nature Education Knowledge, 2012, 3(10): 21. (查阅网上资料, 请确认修改是否正确)
    [4] Ware D M, Thomson R E. Bottom-up ecosystem trophic dynamics determine fish production in the Northeast Pacific[J]. Science, 2005, 308(5726): 1280−1284. doi: 10.1126/science.1109049
    [5] Evans W, Hales B, Strutton P G. Seasonal cycle of surface ocean pCO2 on the Oregon shelf[J]. Journal of Geophysical Research: Oceans, 2011, 116(C5): C05012, doi: 10.1029/2010JC006625
    [6] 孙友旭, 任景玲, 刘素美, 等. 春季水华对南黄海总溶解态无机砷生物地球化学行为的影响[J]. 海洋学报, 2015, 37(4): 16−27.

    Sun Youxu, Ren Jingling, Liu Sumei, et al. The impact of spring bloom on the biogeochemical behavior of total dissolved inorganic arsenic in the South Yellow Sea[J]. Haiyang Xuebao, 2015, 37(4): 16−27.
    [7] 田洪阵, 刘沁萍, Goes J I, 等. 近20年渤海叶绿素a浓度时空变化[J]. 海洋学报, 2019, 41(8): 131−140.

    Tian Hongzhen, Liu Qinping, Goes J I, et al. Temporal and spatial changes in chlorophyll a concentrations in the Bohai Sea in the past two decades[J]. Haiyang Xuebao, 2019, 41(8): 131−140.
    [8] Garrison T. Oceanography: An Invitation to Marine Science[M]. 6th ed. Belmont: Thomson Brooks/Cole, 2007.
    [9] Thomalla S J, Fauchereau N, Swart S, et al. Regional scale characteristics of the seasonal cycle of chlorophyll in the Southern Ocean[J]. Biogeosciences, 2011, 8(10): 2849−2866. doi: 10.5194/bg-8-2849-2011
    [10] Corbière A, Metzl N, Reverdin G, et al. Interannual and decadal variability of the oceanic carbon sink in the North Atlantic subpolar gyre[J]. Tellus B: Chemical and Physical Meteorology, 2007, 59(2): 168−178. doi: 10.1111/j.1600-0889.2006.00232.x
    [11] Grantham B A, Chan F, Nielsen K J, et al. Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the Northeast Pacific[J]. Nature, 2004, 429(6993): 749−754. doi: 10.1038/nature02605
    [12] Cermeño P, Dutkiewicz S, Harris R P, et al. The role of nutricline depth in regulating the ocean carbon cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(51): 20344−20349.
    [13] Regaudie-de-Gioux A, Duarte C M. Temperature dependence of planktonic metabolism in the ocean[J]. Global Biogeochemical Cycles, 2012, 26(1): GB1015, doi: 10.1029/2010GB003907
    [14] Thomas M K, Kremer C T, Klausmeier C A, et al. A global pattern of thermal adaptation in marine phytoplankton[J]. Science, 2012, 338(6110): 1085−1088. doi: 10.1126/science.1224836
    [15] Raymont J E G. Plankton and Productivity in the Oceans[M]. 2nd ed. Oxford: Pergamon Press, 1983.
    [16] Platt T, Sathyendranath S. Ecological indicators for the pelagic zone of the ocean from remote sensing[J]. Remote Sensing of Environment, 2008, 112(8): 3426−3436. doi: 10.1016/j.rse.2007.10.016
    [17] Friedland K D, Mouw C B, Asch R G, et al. Phenology and time series trends of the dominant seasonal phytoplankton bloom across global scales[J]. Global Ecology and Biogeography, 2018, 27(5): 551−569, doi: 10.1111/geb.12717
    [18] Henson S A, Dunne J P, Sarmiento J L. Decadal variability in North Atlantic phytoplankton blooms[J]. Journal of Geophysical Research: Oceans, 2009, 114(C4): C04013, doi: 10.1029/2008JC005139
    [19] Yamaguchi R, Rodgers K B, Timmermann A, et al. Trophic level decoupling drives future changes in phytoplankton bloom phenology[J]. Nature Climate Change, 2022, 12(5): 469−476. doi: 10.1038/s41558-022-01353-1
    [20] He Xianqiang, Bai Yan, Pan D L, et al. Satellite views of the seasonal and interannual variability of phytoplankton blooms in the eastern China seas over the past 14 yr (1998-2011)[J]. Biogeosciences, 2013, 10(1): 4721−4739.
    [21] Sapiano M R P, Brown C W, Schollaert Uz S, et al. Establishing a global climatology of marine phytoplankton phenological characteristics[J]. Journal of Geophysical Research: Oceans, 2012, 117(C8): C08026, doi: 10.1029/2012JC007958
    [22] Lv Ting, Liu Dongyan, Zhou Peng, et al. The coastal front modulates the timing and magnitude of spring phytoplankton bloom in the Yellow Sea[J]. Water Research, 2022, 220: 118669. doi: 10.1016/j.watres.2022.118669
    [23] Henson S A, Robinson I, Allen J T, et al. Effect of meteorological conditions on interannual variability in timing and magnitude of the spring bloom in the Irminger Basin, North Atlantic[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2006, 53(10): 1601−1615. doi: 10.1016/j.dsr.2006.07.009
    [24] Racault M F, Sathyendranath S, Menon N, et al. Phenological responses to ENSO in the global oceans[J]. Surveys in Geophysics, 2017, 38(1): 277−293. doi: 10.1007/s10712-016-9391-1
    [25] Alvera-Azcárate A, Barth A, Rixen M, et al. Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions: application to the Adriatic Sea surface temperature[J]. Ocean Modelling, 2005, 9(4): 325−346. doi: 10.1016/j.ocemod.2004.08.001
    [26] 高心雨, 王天浩, 苏华, 等. 南海两个代表性海区藻华事件特征的比较研究[J]. 海洋学报, 2023, 45(5): 90−106.

    Gao Xinyu, Wang Tianhao, Su Hua, et al. Comparative study on the characteristics of marine bloom events in two representative areas of the South China Sea[J]. Haiyang Xuebao, 2023, 45(5): 90−106.
    [27] Feng Jianfeng, Durant J M, Stige L C, et al. Contrasting correlation patterns between environmental factors and chlorophyll levels in the global ocean[J]. Global Biogeochemical Cycles, 2015, 29(12): 2095−2107. doi: 10.1002/2015GB005216
    [28] Marinov I, Doney S C, Lima I D. Response of ocean phytoplankton community structure to climate change over the 21st century: partitioning the effects of nutrients, temperature and light[J]. Biogeosciences, 2010, 7(12): 3941−3959. doi: 10.5194/bg-7-3941-2010
    [29] Behrenfeld M J, O’Malley R T, Siegel D A, et al. Climate-driven trends in contemporary ocean productivity[J]. Nature, 2006, 444(7120): 752−755. doi: 10.1038/nature05317
    [30] Feng Jianfeng, Stige L C, Hessen D O, et al. A threshold sea-surface temperature at 14℃ for phytoplankton nonlinear responses to ocean warming[J]. Global Biogeochemical Cycles, 2021, 35(5): e2020GB006808. doi: 10.1029/2020GB006808
    [31] Falkowski P G, Oliver M J. Mix and match: how climate selects phytoplankton[J]. Nature Reviews Microbiology, 2007, 5(10): 813−819. doi: 10.1038/nrmicro1751
    [32] Marañón E, Cermeño P, Latasa M, et al. Temperature, resources, and phytoplankton size structure in the ocean[J]. Limnology and Oceanography, 2012, 57(5): 1266−1278. doi: 10.4319/lo.2012.57.5.1266
    [33] Rubio F C, Camacho F G, Sevilla J M F, et al. A mechanistic model of photosynthesis in microalgae[J]. Biotechnology and Bioengineering, 2003, 81(4): 459−473. doi: 10.1002/bit.10492
    [34] Gregg W W, Casey N W, McClain C R. Recent trends in global ocean chlorophyll[J]. Geophysical Research Letters, 2005, 32(3): L03606, doi: 10.1029/2004GL021808
    [35] Kahru M, Gille S T, Murtugudde R, et al. Global correlations between winds and ocean chlorophyll[J]. Journal of Geophysical Research: Oceans, 2010, 115(C12): C12040, doi: 10.1029/2010JC006500
    [36] Barton A D, Lozier M S, Williams R G. Physical controls of variability in North Atlantic phytoplankton communities[J]. Limnology and Oceanography, 2015, 60(1): 181−197. doi: 10.1002/lno.10011
    [37] Sverdrup H U. On conditions for the vernal blooming of phytoplankton[J]. ICES Journal of Marine Science, 1953, 18(3): 287−295. doi: 10.1093/icesjms/18.3.287
    [38] Cabré A, Marinov I, Leung S. Consistent global responses of marine ecosystems to future climate change across the IPCC AR5 earth system models[J]. Climate Dynamics, 2015, 45(5/6): 1253−1280.
  • 加载中
图(10)
计量
  • 文章访问数:  170
  • HTML全文浏览量:  68
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-11
  • 修回日期:  2024-05-21
  • 网络出版日期:  2024-08-16
  • 刊出日期:  2024-10-30

目录

    /

    返回文章
    返回