留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CT观测的融化海冰孔隙结构特征研究

王庆凯 徐正宏 陈世杰 李志军 卢鹏

王庆凯,徐正宏,陈世杰,等. 基于CT观测的融化海冰孔隙结构特征研究[J]. 海洋学报,2024,46(10):65–75 doi: 10.12284/hyxb2024103
引用本文: 王庆凯,徐正宏,陈世杰,等. 基于CT观测的融化海冰孔隙结构特征研究[J]. 海洋学报,2024,46(10):65–75 doi: 10.12284/hyxb2024103
Wang Qingkai,Xu Zhenghong,Chen Shijie, et al. Study on pore structure characteristics of sea ice based on CT observation[J]. Haiyang Xuebao,2024, 46(10):65–75 doi: 10.12284/hyxb2024103
Citation: Wang Qingkai,Xu Zhenghong,Chen Shijie, et al. Study on pore structure characteristics of sea ice based on CT observation[J]. Haiyang Xuebao,2024, 46(10):65–75 doi: 10.12284/hyxb2024103

基于CT观测的融化海冰孔隙结构特征研究

doi: 10.12284/hyxb2024103
基金项目: 国家自然科学基金(42276242,42320104004,52192692)。
详细信息
    作者简介:

    王庆凯(1991—),男,副教授,辽宁省本溪市人,主要从事海冰物理和力学性质研究。E-mail:wangqingkai@dlut.edu.cn

  • 中图分类号: P731.15

Study on pore structure characteristics of sea ice based on CT observation

  • 摘要: 孔隙结构是影响海冰力学性质的重要细观物理特征。为探究融化海冰的细观结构,在渤海盛冰期采集平整冰,并置于低温恒温环境(−1.0℃)内恒温48 h,进行CT扫描观测。确定气体−冰体−卤水的CT值阈值为−310 HU和−30 HU,对冰样CT图像进行三值化分割,识别气体和卤水孔隙,分析孔隙的二维形态特征;在此基础上进行冰样孔隙的三维重构,分析孔隙的三维形态特征。观测发现沿冰厚方向,冰样扫描断面气体面积分数为5.00%~35.93%,卤水分布不连续,面积分数最大为0.06%。气体和卤水孔隙平行冰面方向的截面形状近似圆形,圆度大于0.60。扫描断面内气体孔隙等效圆直径为1.1~3.2 mm,卤水孔隙等效圆直径为0.2~2.0 mm,且发现孔隙等效圆直径与面积分数呈正相关,与圆度呈负相关。三维结构上,根据孔隙球度(Rsph)将气体孔隙分为4种典型形态:冠状孔隙(Rsph ≤ 0.25)、不规则孔隙(0.25 < Rsph ≤ 0.45)、条状孔隙(0.45 < Rsph ≤ 0.60)和球形孔隙(0.60 < Rsph ≤ 1.00)。其中,冠状孔隙单体体积最大[平均体积(11522.8 ± 5610.2 mm3)]且数量最少,球形孔隙尺寸最小(平均直径2.0 ± 1.1 mm)且数量最多。卤水孔隙分为卤水通道(0.45 < Rsph ≤ 0.60)和卤水胞(0.60 < Rsph ≤ 1.00)。卤水通道平均长度17.1 ± 12.1 mm,卤水胞平均直径1.5 ± 0.9 mm;卤水通道数量较少,但体积占比与卤水胞相当。
  • 图  1  海冰采集现场(a)与所采集的冰坯(b)

    Fig.  1  Ice sampling site (a) and the extracted ice block (b)

    图  2  海冰晶体结构(D表示深度)

    Fig.  2  Sea ice crystal structure (D indicates depth)

    图  3  CT扫描

    Fig.  3  The CT scanning

    图  4  CT图像处理

    Fig.  4  CT image processing

    图  5  不同深度位置冰样断面CT图像(左)、阈值分割图像(中)和CT值分布(右)

    Fig.  5  CT images of ice sections at different depth (left), corresponding images after segmentation (middle) and the distributions of CT values (right)

    图  6  海冰扫描断面各组分CT值沿冰厚的变化,误差线为标准差

    Fig.  6  Profile of CT values of air, ice, and brine in the scanning sections along ice thickness. The error bar represents the standard deviation.

    图  7  气体面积分数沿冰厚的变化

    Fig.  7  Profile of air fraction along ice thickness

    图  8  冰样扫描断面CT均值与面孔隙率的关系(a);粒状冰层(b)和柱状冰层扫描断面CT均值与面孔隙率的关系(c)

    Fig.  8  The relationships between mean CT values and porosities of scanning sections in the whole ice sample (a), granular ice (b), and columnar ice (c)

    图  9  气体与卤水孔隙的圆度(a)和等效圆直径(b)沿冰厚的变化。误差线为标准差

    Fig.  9  Profiles of roundness (a) and equivalent diameter (b) of air and brie inclusions along ice thickness. The error bar represents the standard deviation

    图  10  气体孔隙等效圆直径随面积分数(a)和圆度(b)的变化;卤水孔隙等效圆直径随面积分数(c)和圆度(d)的变化

    Fig.  10  Variations of equivalent diameters of air inclusions with area fraction (a) and roundness (b), and of brine inclusions with area fraction (c) and roundness (d)

    图  11  冰样三维孔隙结构(a)、典型气体孔隙(b−e)和典型卤水孔隙(f−g)

    Fig.  11  Three-dimensional pore structure of ice sample (a), typical gas inclusion structure (b−e) and typical gas inclusion structure (f−g).

    图  12  球形气泡等效球直径频率密度分布

    Fig.  12  The probability density distribution of equivalent diameter of spherical gas bubbles

    图  13  球形气泡(a)和卤水胞(b)等效球直径与球度的关系(红色虚线为包络线)

    Fig.  13  The relationships between equivalent diameters and sphericities of spherical gas bubbles (a) and brine cells (b), where the red dashed lines are envelopes

    表  1  粒状冰和柱状冰层二维孔隙特征平均值

    Tab.  1  Mean two-dimensional characteristics of pores in the granular ice and columnar ice

    气体面积分数/%卤水面积分数/%气体孔隙圆度卤水孔隙圆度气体孔隙等效圆直径/mm卤水孔隙等效圆直径/mm
    粒状冰层7.43 ± 4.240.02 ± 0.020.81 ± 0.050.82 ± 0.091.9 ± 0.41.0 ± 0.5
    柱状冰层6.59 ± 8.590.02 ± 0.010.83 ± 0.050.72 ± 0.181.8 ± 0.41.2 ± 0.6
    下载: 导出CSV

    表  2  冰样孔隙分类和特征

    Tab.  2  Classification and characteristics of pores in ice

    气体孔隙特征卤水孔隙特征
    冠状孔隙结构复杂,单体体积最大卤水通道呈细长形,长度为6.1~30.0 mm
    不规则孔隙形态各异,单体体积小于冠状孔隙,但比其余两种气体孔隙大
    条状孔隙呈细长形,长度为0.7~41.6 mm,数量较多卤水胞近似球体,直径为0.4~4.1 mm
    球形气泡近似球体,直径为0.4~9.3 mm,数量最多
    下载: 导出CSV

    表  3  粒状冰层与柱状冰层孔隙参数比较

    Tab.  3  Comparison of pore characteristics between granular ice and columnar ice

    参数 粒状冰层 柱状冰层
    体积占比/% 平均体积/mm3 平均长度/mm 平均直径/mm 体积占比/% 平均体积/mm3 平均长度/mm 平均直径/mm
    卤水通道 23.3 7.0 10.6 2.3 76.7 46.4 30.0 4.5
    卤水胞 100 3.8 2.6 1.5 / / / /
    冠状孔隙 / / / / 16.5 11420.8 74.8 27.9
    不规则孔隙 39.5 553.5 34.9 9.7 27.0 521.0 41.9 8.8
    条状孔隙 52.2 71.4 13.5 4.0 42.7 62.6 13.3 3.7
    球形气泡 52.4 8.9 3.3 2.0 43.3 9.0 3.5 1.9
      注:“/”为无资料。
    下载: 导出CSV
  • [1] Vancoppenolle M, Madec G, Thomas M, et al. Thermodynamics of sea ice phase composition revisited[J]. Journal of Geophysical Research: Oceans, 2019, 124(1): 615−634. doi: 10.1029/2018JC014611
    [2] Nicolaus M, Perovich D K, Spreen G, et al. Overview of the MOSAiC expedition: Snow and sea ice[J]. Elementa: Science of the Anthropocene, 2022, 10(1): 000046. doi: 10.1525/elementa.2021.000046
    [3] Wang Q, Lu P, Leppäranta M, et al. Physical properties of summer sea ice in the Pacific sector of the Arctic during 2008-2018[J]. Journal of Geophysical Research: Oceans, 2020, 125(9): e2020JC016371. doi: 10.1029/2020JC016371
    [4] Moslet P O. Field testing of uniaxial compression strength of columnar sea ice[J]. Cold Regions Science and Technology, 2007, 48(1): 1−14. doi: 10.1016/j.coldregions.2006.08.025
    [5] Wang Qingkai, Li Zhaoquan, Lu Peng, et al. Flexural and compressive strength of the landfast sea ice in the Prydz Bay, East Antarctic[J]. The Cryosphere, 2022, 16(5): 1941−1961. doi: 10.5194/tc-16-1941-2022
    [6] Hectors K, De Waele W. Influence of weld geometry on stress concentration factor distributions in tubular joints[J]. Journal of Constructional Steel Research, 2021, 176: 106376. doi: 10.1016/j.jcsr.2020.106376
    [7] Cox G F N, Weeks W F. Equations for determining the gas and brine volumes in sea-ice samples[J]. Journal of Glaciology, 1983, 29(102): 306−316. doi: 10.3189/S0022143000008364
    [8] Leppäranta M, Manninen T. The brine and gas content of sea ice with attention to low salinities and high temperatures[R]. Helsinki: Finnish Institute of Marine Research, 1988.
    [9] Cole D M, Eicken H, Frey K, et al. Observations of banding in first-year Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 2004, 109(C8): C08012.
    [10] Light B, Maykut G A, Grenfell T C. Effects of temperature on the microstructure of first-year Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 2003, 108(C2): 3051.
    [11] 李志军, 康建成. 北极生长的多年海冰晶体结构分析[J]. 冰川冻土, 2001, 23(4): 383−388.

    Li Zhijun, Kang Jiancheng. Crystals and fabrics of an Arctic multi-year ice sample[J]. Journal of Glaciology and Geocryology, 2001, 23(4): 383−388.
    [12] Kawamura T. Observations of the internal structure of sea ice by X ray computed tomography[J]. Journal of Geophysical Research: Oceans, 1988, 93(C3): 2343−2350. doi: 10.1029/JC093iC03p02343
    [13] Golden K M, Eicken H, Heaton A L, et al. Thermal evolution of permeability and microstructure in sea ice[J]. Geophysical Research Letters, 2007, 34(16): L16501.
    [14] Pringle D J, Miner J E, Eicken H, et al. Pore space percolation in sea ice single crystals[J]. Journal of Geophysical Research: Oceans, 2009, 114(C12): C12017.
    [15] Crabeck O, Galley R, Delille B, et al. Imaging air volume fraction in sea ice using non-destructive X-ray tomography[J]. The Cryosphere, 2016, 10(3): 1125−1145. doi: 10.5194/tc-10-1125-2016
    [16] Oggier M, Eicken H, Wilkinson J, et al. Crude oil migration in sea-ice: laboratory studies of constraints on oil mobilization and seasonal evolution[J]. Cold Regions Science and Technology, 2020, 174: 102924. doi: 10.1016/j.coldregions.2019.102924
    [17] Maus S, Huthwelker T, Enzmann F, et al. Synchrotron-based X-ray micro-tomography: insights into sea ice microstructure[C]//Proceedings of the Sixth Workshop on Baltic Sea Ice Climate. Helsinki, Finland: University of Helsinki, 2009.
    [18] Obbard R W, Troderman G, Baker I. Imaging brine and air inclusions in sea ice using micro-X-ray computed tomography[J]. Journal of Glaciology, 2009, 55(194): 1113−1115. doi: 10.3189/002214309790794814
    [19] Lieb-Lappen R M, Golden E J, Obbard R W. Metrics for interpreting the microstructure of sea ice using X-ray micro-computed tomography[J]. Cold Regions Science and Technology, 2017, 138: 24−35. doi: 10.1016/j.coldregions.2017.03.001
    [20] Salomon M L, Maus S, Petrich C. Microstructure evolution of young sea ice from a Svalbard fjord using micro-CT analysis[J]. Journal of Glaciology, 2022, 68(269): 571−590. doi: 10.1017/jog.2021.119
    [21] Maus S, Schneebeli M, Wiegmann A. An X-ray micro-tomographic study of the pore space, permeability and percolation threshold of young sea ice[J]. The Cryosphere, 2021, 15(8): 4047−4072. doi: 10.5194/tc-15-4047-2021
    [22] 蒲毅彬, 李志军. 海冰的CT扫描和分析计算[C]//中国地理学会冰川冻土分会. 第五届全国冰川冻土学大会论文集(上册). 兰州: 甘肃文化出版社, 1996: 586−590.

    Pu Yibin, Li Zhijun. CT scanning and calculation analysis of sea ice[C]//Glacier and Frozen Soil Branch of the Chinese Geographical Society. Proceedings of the 5th National Conference on Glaciology and Permafrost (Volume I). Lanzhou: Gansu Culture Publishing House, 1996: 586−590. (查阅网上资料, 未找到本条文献英文翻译, 请确认)
    [23] Li Zhijun, Pu Yibin. Some applications of computerized tomography scanner to sea ice[C]//Proceedings of the 12th International Offshore and Polar Engineering Conference. Kitakyushu, Japan, 2002. (查阅网上资料, 未找到本条文献出版社信息, 请确认)
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  35
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-24
  • 修回日期:  2024-08-13
  • 网络出版日期:  2024-09-25
  • 刊出日期:  2024-10-30

目录

    /

    返回文章
    返回