留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于AUNet++的Sentinel-1/SAR辽东湾海冰检测方法研究

郑斌 石立坚 邹斌 任鹏 曾韬 孙晓煜 张蔡辉

郑斌,石立坚,邹斌,等. 基于AUNet++的Sentinel-1/SAR辽东湾海冰检测方法研究[J]. 海洋学报,2024,46(10):108–119 doi: 10.12284/hyxb2024097
引用本文: 郑斌,石立坚,邹斌,等. 基于AUNet++的Sentinel-1/SAR辽东湾海冰检测方法研究[J]. 海洋学报,2024,46(10):108–119 doi: 10.12284/hyxb2024097
Zheng Bin,Shi Lijian,Zou bin, et al. Research on Sentinel-1/SAR sea ice detection method in Liaodong Bay based on AUNet++[J]. Haiyang Xuebao,2024, 46(10):108–119 doi: 10.12284/hyxb2024097
Citation: Zheng Bin,Shi Lijian,Zou bin, et al. Research on Sentinel-1/SAR sea ice detection method in Liaodong Bay based on AUNet++[J]. Haiyang Xuebao,2024, 46(10):108–119 doi: 10.12284/hyxb2024097

基于AUNet++的Sentinel-1/SAR辽东湾海冰检测方法研究

doi: 10.12284/hyxb2024097
基金项目: 国家重点研发计划项目2022YFC2807003,2021YFC2803300。
详细信息
    作者简介:

    郑斌(1998—),男,山东省安丘市人,研究生,主要研究方向为深度学习与遥感图像处理,E-mail:1981611812@qq.com

    通讯作者:

    石立坚(1981—),男,山东省泰安人,研究员,硕士生导师,主要研究方向为海洋遥感应用,E-mail:shilj@mail.nsoas.org.cn

  • 中图分类号: P731.32

Research on Sentinel-1/SAR sea ice detection method in Liaodong Bay based on AUNet++

  • 摘要: 冬季海冰会极大影响辽东湾地区近岸工程建筑、石油平台、船舶航行等安全生产活动。星载合成孔径雷达不受天气影响且分辨率高,可用于辽东湾海冰灾害监测。本文在深度学习模型UNet++的基础上引入卷积注意力模块(CBAM),并使用交叉损失函数来优化模型,建立辽东湾Sentinel-1 SAR图像高精度海冰检测模型(AUNet++),并与PSPNet、Deeplabv3+、DAU-Net等多种深度学习方法进行对比。实验结果表明AUNet++海冰检测方法在OA、AA、MIoU、Kappa系数4种指标上分别达到了97.56%、97.53%、95.19%、95.07%,结果优于其他深度学习方法。该方法可以在高风速的干扰下对海冰边缘、光滑冰面完成精确海冰信息提取,能够为辽东湾地区的大范围、高精度海冰检测工作提供技术支撑。
  • 图  1  研究区域地理位置(渤海辽东湾)

    Fig.  1  The geographical location of the study area (Liaodong Bay, Bohai Sea)

    图  2  数据预处理前后对比

    a. VV极化,b. RGB假彩色

    Fig.  2  Comparison before and after data preprocessing

    a. VV band, b. RGB false color

    图  3  样本切片与对应标签

    Fig.  3  Sample data with corresponding labels

    图  4  AUNet++ 整体架构

    Fig.  4  Overall architecture of AUNet++

    图  6  各类样本不同方法结果可视化

    a. 冰水间隙,b. 光滑冰面,c. 碎冰,d. 海冰边缘,e. 高风速区域

    Fig.  6  Visualization of results of different methods for various samples

    a. ice water gap, b. smooth ice surface, c. broken ice, d. sea ice margin, e. high wind speed area

    图  5  CBAM模块(绿框为通道注意力模块,紫框为空间注意力模块)[19]

    Fig.  5  CBAM module (green box is channel attention module and purple box is space attention module)[19]

    图  7  消融实验可视化结果

    Fig.  7  Visualization results of ablation experiments

    图  8  重叠灰度区域

    Fig.  8  Overlapping gray area

    图  9  切片拼接过程(未进行像素重叠处理)

    Fig.  9  Slice splicing process (without pixel overlap processing)

    图  10  不同重叠区域处理方法结果对比

    Fig.  10  Comparison of the results of different overlapping region processing methods

    图  11  2020年辽东湾冰期3景Sentinel-1数据整体检测结果

    Fig.  11  Overall detection results of Sentinel-1 data of three views during the Liaodong Bay ice Age in 2020

    图  12  辽东湾3景Sentinel-1数据整体检测结果

    Fig.  12  Overall detection results of Sentinel-1 data of three views in Liaodong Bay

    表  1  研究数据具体参数信息

    Tab.  1  Specific parameter information of research data

    序号 成像时间 数据模式 极化方式 分辨率 卫星
    1 2019年12月9日09:49 IW VV+VH 5 × 20 m A星
    2 2020年1月2日09:49 IW VV+VH 5 × 20 m A星
    3 2020年1月8日09:48 IW VV+VH 5 × 20 m B星
    4 2020年1月14日09:48 IW VV+VH 5 × 20 m A星
    5 2020年1月20日09:48 IW VV+VH 5 × 20 m B星
    6 2020年1月26日09:49 IW VV+VH 5 × 20 m A星
    7 2020年2月1日09:48 IW VV+VH 5 × 20 m B星
    8 2020年2月7日09:49 IW VV+VH 5 × 20 m A星
    9 2020年2月13日09:48 IW VV+VH 5 × 20 m B星
    10 2020年2月19日09:49 IW VV+VH 5 × 20 m A星
    11 2023年2月3日09:49 IW VV+VH 5 × 20 m A星
    12 2024年1月5日09:49 IW VV+VH 5 × 20 m A星
    13 2024年1月17日09:49 IW VV+VH 5 × 20 m A星
    下载: 导出CSV

    表  2  不同方法对比结果

    Tab.  2  Comparison results of different methods

    方法总体精度/%平均精度/%均交并比/%Kappa系数/%
    SegNet96.6596.6893.4793.24
    PSPNet93.5793.5987.8484.05
    DeepLabv3+94.4894.5092.9492.67
    UNet96.4896.4993.1592.90
    DAU-UNet96.3796.3592.9492.67
    AUNet++97.5697.5395.1995.07
    下载: 导出CSV

    表  3  消融实验结果分析

    Tab.  3  Analysis of ablation results

    方法 总体精度/% 平均精度/% 均交并比/% Kappa系数
    UNet++ 97.17 97.17 94.46 94.30
    UNet++_BCED 97.23 97.24 94.57 94.41
    AUNet++ 97.37 97.35 94.83 94.69
    AUNet++_BCED 97.56 97.53 95.19 95.07
    下载: 导出CSV
  • [1] Sun Xiaoyu, Zhang Xi, Huang Weimin, et al. Sea ice classification using mutually guided contexts[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4204019.
    [2] 臧金霞, 刘建强, 殷晓斌, 等. 基于最优特征集的HY-1C卫星海岸带成像仪影像海冰分类方法研究[J]. 海洋学报, 2022, 44(5): 35−46.

    Zang Jinxia, Liu Jianqiang, Yin Xiaobin, et al. Study on sea ice classification of HY-1C satellite coastal zone imager images based on the optimal feature set[J]. Haiyang Xuebao, 2022, 44(5): 35−46.
    [3] 孙劭, 苏洁, 史培军. 2010年渤海海冰灾害特征分析[J]. 自然灾害学报, 2011, 20(6): 87−93.

    Sun Shao, Su Jie, Shi Peijun. Features of sea ice disaster in the Bohai Sea in 2010[J]. Journal of Natural Disasters, 2011, 20(6): 87−93.
    [4] Liu Huiying, Guo Huadong, Zhang Lu. SVM-based sea ice classification using textural features and concentration from RADARSAT-2 dual-pol ScanSAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(4): 1601−1613. doi: 10.1109/JSTARS.2014.2365215
    [5] 郑敏薇, 李晓明, 任永政. 高分3号星载合成孔径雷达极地海冰自动检测方法研究[J]. 海洋学报, 2018, 40(9): 113−124. doi: 10.3969/j.issn.0253-4193.2018.09.010

    Zheng Minwei, Li Xiaoming, Ren Yongzheng. The method study on automatic sea ice detection with Gao Fen-3 synthetic aperture radar data in polar regions[J]. Haiyang Xuebao, 2018, 40(9): 113−124. doi: 10.3969/j.issn.0253-4193.2018.09.010
    [6] Tan Weikai, Li J, Xu Linlin, et al. Semiautomated segmentation of Sentinel-1 SAR imagery for mapping sea ice in Labrador coast[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(5): 1419−1432. doi: 10.1109/JSTARS.2018.2806640
    [7] Park J W, Korosov A A, Babiker M, et al. Classification of sea ice types in Sentinel-1 synthetic aperture radar images[J]. The Cryosphere, 2020, 14(8): 2629−2645. doi: 10.5194/tc-14-2629-2020
    [8] 冯琦, 李广雪. 基于Sentinel-1的辽东湾海冰冰情监测[J]. 海岸工程, 2024, 43(1): 66−78. doi: 10.12362/j.issn.1002-3682.20230716001

    Feng Qi, Li Guangxue. Monitoring of sea ice situation in the Liaodong Bay based on Sentinel-1 data[J]. Coastal Engineering, 2024, 43(1): 66−78. doi: 10.12362/j.issn.1002-3682.20230716001
    [9] Lu Yiru, Zhang Biao, Perrie W. Arctic sea ice and open water classification from spaceborne fully polarimetric synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4203713.
    [10] Li Jinxin, Wang Chao, Wang Shigang, et al. Gaofen-3 sea ice detection based on deep learning[C]//Proceedings of 2017 Progress in Electromagnetics Research Symposium-Fall. Singapore: IEEE, 2017: 933-939.
    [11] Zhang Tianyu, Yang Ying, Shokr M, et al. Deep learning based sea ice classification with Gaofen-3 fully polarimetric SAR data[J]. Remote Sensing, 2021, 13(8): 1452. doi: 10.3390/rs13081452
    [12] 徐欢, 任沂斌. 基于混合损失U-Net的SAR图像渤海海冰检测研究[J]. 海洋学报, 2021, 43(6): 157−170.

    Xu Huan, Ren Yibin. Detecting sea ice of Bohai Sea using SAR images based on a hybrid loss U-Net model[J]. Haiyang Xuebao, 2021, 43(6): 157−170.
    [13] Wang Yiran, Li Xiaoming. Arctic sea ice cover data from spaceborne synthetic aperture radar by deep learning[J]. Earth System Science Data, 2021, 13(6): 2723−2742. doi: 10.5194/essd-13-2723-2021
    [14] Ren Yibin, Li Xiaofeng, Yang Xiaofeng, et al. Development of a dual-attention U-Net model for sea ice and open water classification on SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4010205.
    [15] Liang Zeyu, Pang Xiaoping, Ji Qing, et al. An entropy-weighted network for polar sea ice open lead detection from Sentinel-1 SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4304714.
    [16] Wan Hongyang, Luo Xiaowen, Wu Ziyin, et al. Multi-featured sea ice classification with SAR image based on convolutional neural network[J]. Remote Sensing, 2023, 15(16): 4014. doi: 10.3390/rs15164014
    [17] 庞海洋, 孔祥生, 孙志伟, 等. 基于遥感和气象数据对辽东湾海冰变化预测研究[J]. 海洋与湖沼, 2018, 49(4): 725−733.

    Pang Haiyang, Kong Xiangsheng, Sun Zhiwei, et al. The forecast model of sea ice changes in Liaodong Bay using remote sensing and meteorological data[J]. Oceanologia et Limnologia Sinica, 2018, 49(4): 725−733.
    [18] 刘眉洁. 基于高分辨率极化SAR的海冰分类和厚度探测方法研究[D]. 青岛: 中国石油大学(华东), 2016.

    Liu Meijie. Research on the sea ice classification and thickness detection with high-resolution and polarimetric SAR data[D]. Qingdao: China University of Petroleum (East China), 2016.
    [19] 自然资源部海洋预警监测司. 2019中国海洋灾害公报[R]. 北京: 自然资源部, 2020.

    Marine Early Warning and Monitoring Department of the Ministry of Natural Resources. 2019 Bulletin of China marine disaster[R]. Beijing: Ministry of Natural Resources, 2020.
    [20] 孙湘平. 中国近海区域海洋[M]. 北京: 海洋出版社, 2006.

    Sun Xiangping. China’s Offshore Regional Oceans[M]. Beijing: China Ocean Press, 2006. (查阅网上资料, 未找到对应的英文翻译, 请确认)
    [21] Murashkin D, Spreen G, Huntemann M, et al. Method for detection of leads from Sentinel-1 SAR images[J]. Annals of Glaciology, 2018, 59(76pt2): 124−136. doi: 10.1017/aog.2018.6
    [22] Lopes A, Touzi R, Nezry E. Adaptive speckle filters and scene heterogeneity[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(6): 992−1000. doi: 10.1109/36.62623
    [23] Zhou Zongwei, Rahman Siddiquee M, Tajbakhsh N, et al. UNet++: a nested U-net architecture for medical image segmentation[C]//Proceedings of the 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018. Granada, Spain: Springer, 2018: 3−11.
    [24] Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018: 3−19.
    [25] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference. Munich: Springer, 2015: 234−241.
    [26] Huang Gao, Liu Zhuang, Van Der Maaten L, et al. Densely connected convolutional networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4700−4708.
    [27] Milletari F, Navab N, Ahmadi S A. V-Net: fully convolutional neural networks for volumetric medical image segmentation[C]//Proceedings of 2016 Fourth International Conference on 3D Vision (3DV). Stanford: IEEE, 2016: 565−571.
    [28] Robbins H, Monro S. A stochastic approximation method[J]. The Annals of Mathematical Statistics, 1951, 22(3): 400−407. doi: 10.1214/aoms/1177729586
    [29] Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481−2495. doi: 10.1109/TPAMI.2016.2644615
    [30] Zhao Hengshuang, Shi Jianping, Qi Xiaojuan, et al. Pyramid scene parsing network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2881−2890.
    [31] Chen L C, Zhu Yukun, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018: 801−818.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  26
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-06
  • 修回日期:  2024-07-30
  • 网络出版日期:  2024-09-25
  • 刊出日期:  2024-10-30

目录

    /

    返回文章
    返回