留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于复经验正交函数的日本以南黑潮路径时空变化特征及其因果关系研究

纪增华 武晓博 李威 曹力戈 张蒙蒙 董婉秋 韩桂军

纪增华,武晓博,李威,等. 基于复经验正交函数的日本以南黑潮路径时空变化特征及其因果关系研究[J]. 海洋学报,2024,46(8):50–62 doi: 10.12284/hyxb2024071
引用本文: 纪增华,武晓博,李威,等. 基于复经验正交函数的日本以南黑潮路径时空变化特征及其因果关系研究[J]. 海洋学报,2024,46(8):50–62 doi: 10.12284/hyxb2024071
Ji Zenghua,Wu Xiaobo,Li Wei, et al. Spatiotemporal variation characteristics and causal relationship of the Kuroshio path south of Japan based on complex empirical orthogonal functions[J]. Haiyang Xuebao,2024, 46(8):50–62 doi: 10.12284/hyxb2024071
Citation: Ji Zenghua,Wu Xiaobo,Li Wei, et al. Spatiotemporal variation characteristics and causal relationship of the Kuroshio path south of Japan based on complex empirical orthogonal functions[J]. Haiyang Xuebao,2024, 46(8):50–62 doi: 10.12284/hyxb2024071

基于复经验正交函数的日本以南黑潮路径时空变化特征及其因果关系研究

doi: 10.12284/hyxb2024071
基金项目: 国家重点研发计划(2023YFC3107800);国家自然科学基金(42376190,41876014)。
详细信息
    作者简介:

    纪增华(1999—),男,黑龙江省大庆市人,主要从事黑潮分析与预报研究。E-mail:jzh1999@tju.edu.cn

    通讯作者:

    武晓博(1995—),男,河北省邢台市人,主要从事黑潮分析与预报研究。E-mail:xb_wu@tju.edu.cn

    韩桂军(1970—),女,辽宁省新民市人,教授,主要从事海洋分析与预报研究。E-mail:guijun_han@tju.edu.cn

  • 中图分类号: P731.21

Spatiotemporal variation characteristics and causal relationship of the Kuroshio path south of Japan based on complex empirical orthogonal functions

  • 摘要: 日本以南黑潮路径变化的相关分析一直是热点之一。过去的研究指出日本以南黑潮路径变化受到多种因素的影响,如上游流量、中尺度涡旋、气候信号等。然而,关于这些影响因素之间的相互因果关系尚不完全清楚。本文基于50a(1958−2007年)中国海洋再分析数据集(CORA)和14a(2008−2021年)卫星高度计资料,获取了日本以南黑潮路径时间序列,并利用复经验正交函数(CEOF)分析方法对其进行时空特征分析。结果表明,经CEOF分析获取的前两个主模态可以描述日本以南黑潮路径时空变化的主要特征,且分别代表与之相关的东传和西传信号。进一步地,基于信息流理论的因果分析结果表明:一方面,太平洋十年涛动(PDO)通过风应力的变化影响副热带逆流(STCC)区域的涡旋活动,从而影响吐噶喇海峡的黑潮输运变化,进而对东传信号产生直接影响,最终影响日本以南海域的黑潮路径变化;另一方面,黑潮延伸体的涡旋活动受到北太平洋涡旋振荡(NPGO)的影响,促使该区域的中尺度涡旋向西移动,进而对西传信号产生直接影响,最终影响日本以南海域的黑潮路径变化。此外,分析结果还表明:日本以南海域的相对涡度和再循环流强度变化是对黑潮路径变化的响应,而非影响黑潮路径变化的因素。
  • 图  1  基于CORA数据绘制的日本以南黑潮3种典型路径

    典型大弯曲(蓝色)、离岸非大弯曲(绿色)和近岸非大弯曲(红色),红星分别表示Naze、Aburatsu、Kushimoto和Uragami 4个验潮站

    Fig.  1  Three typical paths of Kuroshio south of Japan based on CORA data

    Typical Large Meander (blue), offshore Non-Large Meander (green), and nearshore Non-Large Meander (red). The red stars denote tide gauge stations Naze, Aburatsu, Kushimoto and Uragami, respectively

    图  2  第一主模态空间分布与时间序列的振幅(无量纲)和幅角

    a.空间振幅;b.空间幅角;c.时间振幅;d.时间幅角。灰色阴影区域表示黑潮大弯曲时期

    Fig.  2  Amplitude (dimensionless) and angle plots of the spatial distribution and time series of the first principal mode

    a. Spatial amplitude; b. spatial angle; c. time amplitude; d. time angle. The gray shaded area represents the period of the Kuroshio Large Meander

    图  3  第二主模态空间分布与时间序列的振幅(无量纲)和幅角

    a.空间振幅;b.空间幅角;c.时间振幅;d.时间幅角。灰色阴影区域表示黑潮大弯曲时期

    Fig.  3  Amplitude (dimensionless) and angle plots of the spatial distribution and time series of the second principal mode

    a. Spatial amplitude; b. spatial angle; c. time amplitude; d. time angle. The gray shaded area represents the period of the Kuroshio Large Meander

    图  4  日本以南黑潮路径的霍夫莫勒图(无量纲)

    a.真实场;b.第一模态重构;c.第二模态重构;d.第一和二模态重构叠加

    Fig.  4  Hovmöller diagram of the Kuroshio path south of Japan (dimensionless)

    a. Real field; b. first mode reconstruction; c. second mode reconstruction; d. first and second mode reconstruction superposition

    图  5  STCC区域的涡动能时间序列

    灰色阴影区域表示黑潮大弯曲时期

    Fig.  5  STCC area of eddy kinetic energy time series.

    The gray shaded area represents the period of the Kuroshio Large Meander

    图  6  吐噶喇海峡输运量时间序列

    灰色阴影区域表示黑潮大弯曲时期

    Fig.  6  Time series of transport volume in Tokara Strait

    The gray shaded area represents the period of the Kuroshio Large Meander

    图  7  Kushimoto和Uragami潮量站海平面差时间序列

    灰色阴影区域表示黑潮大弯曲时期

    Fig.  7  Time series of sea level differences between Kushimoto and Uragami tidal stations

    The gray shaded area represents the period of the Kuroshio Large Meander

    图  8  再循环流强度(a);垂向剪切(b);相对涡度(c)

    灰色阴影区域表示黑潮大弯曲时期

    Fig.  8  Recirculation gyre strength (a); verticdal shear (b); relative vorticity (c)

    The gray shaded area represents the period of the Kuroshio Large Meander

    图  9  KE指数(a)和KE区域(b)的涡动能时间序列

    灰色阴影区域表示黑潮大弯曲时期

    Fig.  9  KE index (a) and Eddy kinetic energy time series in the KE region (b)

    The gray shaded area represents the period of the Kuroshio Large Meander

    图  10  PDO指数(a),NPGO指数(b)和北太平洋风应力(c)时间序列

    灰色阴影区域表示黑潮大弯曲时期

    Fig.  10  PDO index (a), NPGO index (b) and North Pacific wind stress (c) time series

    The gray shaded area represents the period of the Kuroshio Large Meander

    图  11  东传相关因素(a)和西传相关因素(b)时间序列(无量纲)

    Fig.  11  Time series of factors related to eastward transmission (a) and westward transmission (b) (dimensionless)

    图  12  日本以南黑潮路径因果关系导向

    所有结果均通过90%显著检验。黑色粗实线表示由PDO(NPGO)到日本以南黑潮路径的因果关系链,蓝色细实线表示存在双向因果的反向因果关系链,蓝色虚线表示存在因果关系但仍需进一步验证的过程

    Fig.  12  Causal relationship of the Kuroshio path south of Japan

    All results passed the 90% significance test. The thick black lines indicate the causal chains from PDO (NPGO) to the path of the Kuroshio south of Japan, the blue thin solid lines indicate reverse causality chains with two-way causation and the blue dashed lines indicate the process where causality exists but requires further verification

    表  1  CEOF前3个模态贡献率

    Tab.  1  Contribution rate of the first 3 modes of CEOF

    模态 模态方差贡献率/% 模态累积方差贡献率/%
    1 53.03 53.03
    2 23.41 76.44
    3 12.81 89.25
    下载: 导出CSV

    表  2  信息流因果分析结果

    Tab.  2  Results of causal analysis of information flow

    因果 EKE
    (STCC)
    KT 东传 西传 CURL SRG SHEAR KUI KE EKE
    (KE)
    风应力 PDO NPGO
    EKE(STCC) 0.0021 0 0 0.0012 0.0253 0.0103 0.0001 0.004 0.0002 0.0709 0.0171 0.0029
    KT 0.0095 0.0091 0.00002 0.0006 0.0032 0 0.0134 0.0023 0.0160 0.0007 0.0004 0.0001
    东传 0 0.0075 0.0033 0.0005 0.0004 0 0.0168 0.0055 0.0062 0 0 0.0008
    西传 0 0.0002 0.0032 0 0.0005 0.0003 0.0013 0.0052 0.1010 0.0001 0.0004 0
    CURL 0.0023 0.0208 0.0376 0.0002 0.0429 0.0031 0.0352 0.0157 0.0244 0.0001 0.0027 0.0004
    SRG 0.0283 0.0060 0.0305 0.0025 0.0201 0.0029 0.0233 0.0107 0.0004 0.0099 0.0004 0.0009
    SHEAR 0.0162 0 0 0.0036 0.0217 0.0131 0.0003 0.0041 0.0003 0.0046 0.0020 0.0005
    KUI 0.0001 0.0071 0.0092 0.0006 0.0018 0.0004 0.0002 0.0011 0 0 0 0.0001
    KE 0.0009 0.0025 0.0030 0.0080 0.0008 0.0029 0.0011 0.0011 0.0714 0.0001 0.0037 0.0026
    EKE(KE) 0.0009 0.0030 0.0007 0.0047 0.0012 0.0004 0.0001 0.0004 0.0617 0 0.0006 0.0027
    风应力 -0.055 0.0007 0 0.0001 0.0003 0.0007 0.001 0 0.0003 0.0005 0.0012 0.0003
    PDO 0.0066 0 0.0001 0.0034 0.0028 0.0016 0.0006 0.0004 0.0030 0.0051 0.0011 0.0113
    NPGO 0.0097 0.0009 0.0010 0.0003 0.0005 0.0003 0.0002 0 0.0088 0.0061 0.0001 0.0092
    Note:黑色加粗(未加粗)表示通过了(未通过)显著性水平为90%的置信度检验,红色表示重点关注结果。
    下载: 导出CSV

    表  3  超前相关分析

    Tab.  3  lead correlation analysis

    (a) 东传
    PDO-$ \tau $ $ \tau $-EKE EKE-KT KT-东传 东传-KUI
    相关性 0.71 −0.82 0.76 −0.86 −0.94
    超前/月 1 6 4 2 2
    (b) 西传
    NPGO-EKE EKE-西传 西传-KUI EKE-CURL
    相关性 −0.63 0.92 0.93 −0.85
    超前/月 2 2 2 2
    下载: 导出CSV
  • [1] Takeyoshi Nagai, Hiroaki Saito, Koji Suzuki, et al. Kuroshio Current Physical, Biogeochemical, And Ecosystem Dynamics [M]. American Geophysical Union, Geophysical Monograph 243, 2019.
    [2] Kawabe M. Sea level variations at the Izu Islands and typical stable paths of the Kuroshio[J]. Journal of the Oceanographical Society of Japan, 1985, 41(5): 307−326. doi: 10.1007/BF02109238
    [3] Wu X, Zhao Y, Han G, et al. Temporal-spatial oceanic variation in relation with the three typical Kuroshio paths south of Japan[J]. Acta Oceanologica Sinica, 2022, 41: 15−25. doi: 10.1007/s13131-021-1941-9
    [4] 于振娟. 东海黑潮流轴的变化及日本以南黑潮大弯曲同青岛降水量的关系[J]. 海洋科学, 1988, 12(4): 6−11.

    Yu Zhenjuan. Relationship of variation of axial position of the Kuroshio in the East China Sea and its meanders south of Japan with the precipitation in Qingdao[J]. Marine Sciences, 1988, 12(4): 6−11.
    [5] Xu H, Tokinaga H, Xie S. Atmospheric effects of the Kuroshio large meander during 2004−05[J]. Journal of Climate, 2010, 23(17): 4704−4715. doi: 10.1175/2010JCLI3267.1
    [6] 崔雪森, 伍玉梅, 唐峰华, 等. 日本以南黑潮流量对西北太平洋柔鱼渔场重心影响的滞后性分析[J]. 大连海洋大学学报, 2017, 32(01): 99−104.

    Cui Xuesen, Wu Yumei, Tang Fenghua, et al. Effect of Kuroshio transport off southern Japan on fishing ground gravity of neon flying squid Ommastrephes bartramii in northwest Pacific Ocean based on time lag analysis [J]. Journal of Dalian Ocean University, 2017, 32(01): 99−104.
    [7] Lizarbe Barreto, Daniel Andres, Chevarria Saravia, et al. Phytoplankton increase along the Kuroshio due to the large meander [J]. Frontiers in Marine Science, 2021.
    [8] Hasumi H, Tatebe H, Kawasaki T, et al. Progress of North Pacific modeling over the past decade[J]. Deep-Sea Research II, 2010, 57: 1188−1200. doi: 10.1016/j.dsr2.2009.12.008
    [9] Usui N, Wakamatsu T, Tanaka Y, et al. Four-dimensional variational ocean reanalysis: a 30-year high-resolution dataset in the western North Pacific (FORA-WNP30)[J]. Journal of Oceanography, 2017, 73: 205−233. doi: 10.1007/s10872-016-0398-5
    [10] Chao S. Bimodality of the Kuroshio[J]. Journal of Physical Oceanography, 1984, 14: 92−103. doi: 10.1175/1520-0485(1984)014<0092:BOTK>2.0.CO;2
    [11] Yoon J, Yasuda I. Dynamics of the Kuroshio large meander: Two-layer model[J]. Journal of Physical Oceanography, 1987, 17: 66−81. doi: 10.1175/1520-0485(1987)017<0066:DOTKLM>2.0.CO;2
    [12] Kazunori Akitomo, Masao Kurogi. Path transition of the Kuroshio due to mesoscale eddies: A two-layer, wind-driven experiment[J]. Journal of Oceanography, 2001, 57: 735−741. doi: 10.1023/A:1021292627245
    [13] Qiu B, Chen S. Revisit of the Occurrence of the Kuroshio large meander south of Japan[J]. Journal of Physical Oceanography, 2021, 51: 3679−3694. doi: 10.1175/JPO-D-21-0167.1
    [14] Kobashi F, Hanawa K. Hydrographic features off the southeast coast of Kyushu during the Kuroshio small meanders: A case study for small meanders that occurred in 1994 and 1995 spring[J]. Journal of Oceanography, 2004, 60: 645−661. doi: 10.1007/s10872-004-5758-x
    [15] Miyazawa Y, Kagimoto T, Guo X, et al. The Kuroshio large meander formation in 2004 analyzed by an eddy-resolving ocean forecast system[J]. Journal of Geophysical Research, 2008, 113: C10015.
    [16] Usui N, Tsujino H, Nakano H, et al. Long-term variability of the Kuroshio path south of Japan[J]. Journal of Oceanography, 2013, 69: 647−670. doi: 10.1007/s10872-013-0197-1
    [17] Ebuchi N, Hanawa K. Trajectory of mesoscale eddies in the Kuroshio recirculation region[J]. Journal of Oceanography, 2001, 57: 471−480. doi: 10.1023/A:1021293822277
    [18] Mitsudera H, Waseda T. Anticyclonic eddies and Kuroshio meander formation[J]. Geophysical Research Letters, 2001, 28: 2025−2028. doi: 10.1029/2000GL012668
    [19] Ichikawa K. Variation of the Kuroshio in the Tokara strait induced by mesoscale eddies[J]. Journal of Oceanography, 2001, 57: 55−68. doi: 10.1023/A:1011174720390
    [20] Usui N, Tsujino H, Nakano H, et al. Formation process of the Kuroshio large meander in 2004[J]. Journal of Geophysical Research, 2008, 113: C08047.
    [21] Qiu B, Chen S. Variability of the Kuroshio extension jet, recirculation gyre, and mesoscale eddies on decadal time scales[J]. Journal of Physical Oceanography, 2005, 35(11): 2090−2103. doi: 10.1175/JPO2807.1
    [22] Sugimoto S, Hanawa K. Relationship between the path of the Kuroshio in the south of Japan and the path of the Kuroshio extension in the east[J]. Journal of Oceanography, 2012, 68: 219−225. doi: 10.1007/s10872-011-0089-1
    [23] 吴友婷, 杨洋, 梁湘三. 基于自组织映射的日本南部黑潮与黑潮延伸体的典型时空模态及其因果关系研究[J]. 海洋学报, 2022, 44(09): 38−54.

    Wu Youting, Yang Yang, Liang Xiangsan. Typical spatiotemporal patterns of the Kuroshio south of Japan and the Kuroshio extension using self organizing maps and their causal relationship[J]. Haiyang Xuebao, 2022, 44(09): 38−54.
    [24] Ebuchi N, Hanawa K. Influence of mesoscale eddies on variations of the Kuroshio path south of Japan[J]. Journal of Oceanography, 2003, 59: 25−36. doi: 10.1023/A:1022856122033
    [25] Miyazawa Y, Guo X, Yamagata T. Roles of mesoscale eddies in the Kuroshio paths[J]. Journal of Physical Oceanography, 2004, 34: 2203−2222. doi: 10.1175/1520-0485(2004)034<2203:ROMEIT>2.0.CO;2
    [26] Qiu B, Chen S, Oka E. Why Did the 2017 Kuroshio large meander event become the longest in the past 70 years? [J]. Geophysical Research Letters, 2023.
    [27] Di Lorenzo E, Schneider N, Cobb K, et al. North Pacific gyre oscillation links ocean climate and ecosystem change[J]. Geophysical Research Letters, 2008, 35: L08607.
    [28] Ceballos L, Di Lorenzo E, Hoyos C, et al. North Pacific gyre oscillation synchronizes climate fluctuations in the eastern and western boundary systems[J]. Journal of Climate, 2009, 22: 5163−5174. doi: 10.1175/2009JCLI2848.1
    [29] Yang Y, Liang X, Qiu B, et al. On the decadal variability of the eddy kinetic energy in the Kuroshio extension[J]. Journal of Physical Oceanography, 2017, 47: 1169−1187. doi: 10.1175/JPO-D-16-0201.1
    [30] Wang Q, Tang Y. The interannual variability of eddy kinetic energy in the Kuroshio large meander region and its relationship to the Kuroshio latitudinal position at 140°E [J]. Journal of Geophysical Research: Oceans, 2022, 127(2).
    [31] Douglass E, Jayne S, Bryan F, et al. Kuroshio pathways in a climatologically forced model[J]. Journal of Oceanography, 2012, 68: 625−639. doi: 10.1007/s10872-012-0123-y
    [32] Sekine Y, Fujita K. Why does the sea level difference between Kushimoto and Uragami show periods of large meander and non-large meander paths of the Kuroshio south of Japan?[J]. Journal of Oceanography, 1999, 55(1/2): 43−51.
    [33] Han G, Li W, Zhang X, et al. A new version of regional ocean reanalysis for coastal waters of China and adjacent seas[J]. Advances in Atmospheric Science, 2013(4): 974−982.
    [34] 武晓博. 日本以南黑潮路径分析与预测研究[D]. 天津: 天津大学, 2020.

    武晓博. 日本以南黑潮路径分析与预测研究[D]. 天津: 天津大学, 2020.
    [35] Hurlburt H, Rhodes R, Barron C, et al. A feasibility demonstration of ocean model eddy-resolving nowcast/forecast skill using satellite altimeter data [C]. Naval Research Laboratory, Stennis Space Center, Hancock, 2000.
    [36] Xu W, Ren H. A CEOF-based method for measuring amplitude and phase properties of the QBO [J]. Climate Dynamics 2023, 61, 923−937.
    [37] Wu X, Han G, Li W, et al. A hybrid deep learning model for predicting the Kuroshio path south of Japan[J]. Frontiers in Marine Science, 2023, 10: 1112336. doi: 10.3389/fmars.2023.1112336
    [38] Liang X. Unraveling the cause-effect relation between time series[J]. Physical Review E, 2014, 90(5): 052150. doi: 10.1103/PhysRevE.90.052150
    [39] Liang X. Information flow and causality as rigorous notions ab initio[J]. Physical Review E, 2016, 94(5): 052201. doi: 10.1103/PhysRevE.94.052201
    [40] Stips A. On the causal structure between CO2 and global temperature[J]. Scientific Reports, 2016, 6: 21691. doi: 10.1038/srep21691
    [41] 邓思捷, 谢玲玲, 朱振坤, 等. 吕宋冷涡的年际变化及影响机制分析[J]. 海洋科学进展, 2022, 40(01): 13−26.

    Deng Sijie, Xie Lingling, Zhu Zhenkun, et al. Interannual variation of the Luzon cold eddy and its mechanism[J]. Advances in Marine Science, 2022, 40(01): 13−26.
    [42] 宫湛秋, 孙诚, 李建平, 等. 基于信息流理论的因果分析在辨析大西洋多年代际振荡物理机制中的应用[J]. 大气科学, 2019, 43(5): 1081−1094.

    Gong Zhanqiu, Sun Cheng, Li Jianping, et al. The application of causality analysis based on the theory of information flow in distinguishing the Atlantic multi-decadal oscillation driving mechanism[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(5): 1081−1094.
    [43] North G, Bell T, Cahalan R, et al. Sampling errors in the estimation of empirical orthogonal functions[J]. Monthly Weather Review, 1982, 110(7): 699−706. doi: 10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2
    [44] Kawabe M. Variations of current path, velocity, and volume transport of the Kuroshio in relation with the large meander[J]. Journal of Physical Oceanography, 1995, 25: 3103−3117. doi: 10.1175/1520-0485(1995)025<3103:VOCPVA>2.0.CO;2
    [45] Moriyasu S. On the difference in the monthly sea level between Kushimoto and Uragami, Japan[J]. Journal of the Oceanographical Society of Japan, 1961, 17: 197−200. doi: 10.5928/kaiyou1942.17.197
    [46] Qiu B, Chen S, Schneider N, et al. A coupled decadal prediction of the dynamic state of the Kuroshio extension system[J]. Journal of Climate, 2014, 27(4): 1751−1764. doi: 10.1175/JCLI-D-13-00318.1
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  19
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-08
  • 修回日期:  2024-06-05
  • 刊出日期:  2024-09-26

目录

    /

    返回文章
    返回