留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

马来西亚东北部Setiu潟湖1970年以来沉积环境演化及其对ENSO的响应

赵周平 李超 骆正骅 Nicholas Ng Chia Wei 戴璐

赵周平,李超,骆正骅,等. 马来西亚东北部Setiu潟湖1970年以来沉积环境演化及其对ENSO的响应[J]. 海洋学报,2024,46(4):79–89 doi: 10.12284/hyxb2024045
引用本文: 赵周平,李超,骆正骅,等. 马来西亚东北部Setiu潟湖1970年以来沉积环境演化及其对ENSO的响应[J]. 海洋学报,2024,46(4):79–89 doi: 10.12284/hyxb2024045
Zhao Zhouping,Li Chao,Luo Zhenghua, et al. Evolution of sedimentary environment in Setiu Lagoon, northeastern Malaysia, and its response to ENSO[J]. Haiyang Xuebao,2024, 46(4):79–89 doi: 10.12284/hyxb2024045
Citation: Zhao Zhouping,Li Chao,Luo Zhenghua, et al. Evolution of sedimentary environment in Setiu Lagoon, northeastern Malaysia, and its response to ENSO[J]. Haiyang Xuebao,2024, 46(4):79–89 doi: 10.12284/hyxb2024045

马来西亚东北部Setiu潟湖1970年以来沉积环境演化及其对ENSO的响应

doi: 10.12284/hyxb2024045
基金项目: 国家重点研发计划项目(2022YFF0800504);国家自然科学基金项目(42273057,42076063);上海市自然科学基金项目(21590712700)。
详细信息
    作者简介:

    赵周平 (2002—),女,河南省安阳市人,主要从事海洋沉积地球化学研究。E-mail:zpzhao@tongji.edu.cn

    通讯作者:

    李超(1983—),男,山东省莱芜市人,博士,副教授,主要从事海洋沉积地球化学研究。E-mail:cli@tongji.edu.cn

  • 中图分类号: P736.21+3

Evolution of sedimentary environment in Setiu Lagoon, northeastern Malaysia, and its response to ENSO

  • 摘要: 马来半岛位于低纬热带地区,厄尔尼诺−南方涛动(El Niño-Southern Oscillation,ENSO)如何影响该区域的气候,尤其是降水仍然存在争议。本文以马来半岛东北部登嘉楼州Setiu潟湖钻孔NTT-3为研究对象,通过分析粒度、总有机碳及总氮含量、C/N比值和XRF岩心扫描等,探讨该钻孔的沉积环境变化及其对ENSO的响应。研究结果显示,钻孔记录中自1970年前后(84 cm处)出现两种不同的变化趋势。1970年之前钻孔下部沉积物粒度、有机和无机地球化学特征趋势波动明显,沉积速率较低。而1970年以来,潟湖沉积环境总体稳定,沉积物中的有机组分主要来自红树林,同时伴有河流输入的淡水浮游植物的贡献。频谱分析结果显示1970年以来钻孔上部存在明显的ENSO周期变化。强厄尔尼诺现象基本对应低Zr/Rb比值和低Zr/Ti比值,而强拉尼娜(La Niña)现象基本对应高Zr/Rb比值和高Zr/Ti比值。该结论不仅支持了现代观测对马来半岛东部沿海地区气候变化的认识,同时也在地质记录中发现了ENSO变化的直接证据,对全面认识和理解ENSO对亚洲气候变化的影响、区域陆海相互作用过程和环境响应等方面具有重要现实意义。
  • 图  1  研究区域、钻孔点位及岩心剖面

    a. 马来半岛研究区域及夏、冬季风方向;b. 研究区卫星图片(来自谷歌地球);c. 钻孔NTT-3岩性和粒度组成

    Fig.  1  Study area, drilling locations, and core profile diagram

    a. Study area of the Malay Peninsula and the direction of summer and winter winds; b. satellite image of the study area (from Google Eeath); c. Lithology and partice sire composition of Borehole NTT-3

    图  2  NTT-3钻孔定年结果

    a. 210Pbex210Pbsu剖面;b. 210Pb和14C定年结果

    Fig.  2  Dating results of Core NTT-3

    a. 210Pbex and 210Pbsu profile; b. 210Pb and 14C dating result

    图  3  NTT-3钻孔有机地球化学指标垂向变化曲线

    Fig.  3  Vertical variation of organic geochemical parameters in Core NTT-3

    图  4  NTT-3钻孔元素含量及比值的垂向变化曲线Fig. 4 Vertical variation of elemental contents and ratios in Core NTT-3

    图  5  NTT-3钻孔沉积物C/N比值和δ13C值(据[20]修改)

    Fig.  5  C/N ratio and δ13C value in Core NTT-3 (modified according of raference [20])

    图  6  地球化学指标频谱分析(95%置信区间)

    Fig.  6  Geochemical indices spectrum analysis (95% confidence interval)

    图  7  NTT-3钻孔Zr/Rb、Zr/Ti比值记录与Niño 3.4 指数对比(Niño 3.4 指数来自http://www.cpc.ncep.noaa.gov/data/indices

    Fig.  7  The ratios of Zr/Rb and Zr/Ti in Core NTT-3 and comparisons with Niño 3.4 index

    表  1  马来西亚东北部近岸NTT-3孔沉积物AMS 14C测年结果

    Tab.  1  The AMS 14C dating results of sediments from NTT-3 core in the northeastern coastal area of Malaysia

    深度/cm 测年
    材料
    14C年龄/
    (a BP)
    校正年龄/
    (cal a BP)(2σ
    平均日历年龄/
    (A.D.)
    93~94 植物 −30 ± 30 −5~−7 (0.85) 1956
    104~105 植物 −15 ± 30 −5~−7 (0.95) 1955
    120~121 植物 −660 ± 30 −50~−54 (0.89) 2001
    124~125 植物 360 ± 30 410~315 (0.47) 1588
    145~146 植物 890 ± 30 834~732 (0.60) 1167
    下载: 导出CSV
  • [1] Tangang F T, Juneng L, Salimun E, et al. Climate change and variability over Malaysia: gaps in science and research information[J]. Sains Malaysiana, 2012, 41(11): 1355−1366.
    [2] Tan M L, Duan Zheng. Assessment of GPM and TRMM precipitation products over Singapore[J]. Remote Sensing, 2017, 9(7): 720. doi: 10.3390/rs9070720
    [3] Suhaila J, Yusop Z. Trend analysis and change point detection of annual and seasonal temperature series in Peninsular Malaysia[J]. Meteorology and Atmospheric Physics, 2018, 130(5): 565−581. doi: 10.1007/s00703-017-0537-6
    [4] Juneng L, Tangang F T. Evolution of ENSO-related rainfall anomalies in Southeast Asia region and its relationship with atmosphere-ocean variations in Indo-Pacific Sector[J]. Climate Dynamics, 2005, 25(4): 337−350. doi: 10.1007/s00382-005-0031-6
    [5] Yusof F, Hui-Mean F, Suhaila J, et al. Characterisation of drought properties with bivariate copula analysis[J]. Water Resources Management, 2013, 27(12): 4183−4207. doi: 10.1007/s11269-013-0402-4
    [6] Othman M, Ash’aari Z H, Muharam F M, et al. Assessment of drought impacts on vegetation health: a case study in Kedah[J]. IOP Conference Series: Earth and Environmental Science, 2016, 37: 012072. doi: 10.1088/1755-1315/37/1/012072
    [7] Tan M L, Juneng L, Tangang F T, et al. Changes in temperature extremes and their relationship with ENSO in Malaysia from 1985 to 2018[J]. International Journal of Climatology, 2021, 41(S1): E2564−E2580.
    [8] Alexander L V. Global observed long-term changes in temperature and precipitation extremes: A review of progress and limitations in IPCC assessments and beyond[J]. Weather and Climate Extremes, 2016, 11: 4−16. doi: 10.1016/j.wace.2015.10.007
    [9] Wong C L, Venneker R, Uhlenbrook S, et al. Variability of rainfall in Peninsular Malaysia[J]. Hydrology and Earth System Sciences Discussions, 2009, 6(4): 5471−5503.
    [10] Wong C L, Liew J, Yusop Z, et al. Rainfall characteristics and regionalization in Peninsular Malaysia based on a high resolution gridded data set[J]. Water, 2016, 8(11): 500. doi: 10.3390/w8110500
    [11] He Qing, Chun K P, Tan M L, et al. Tropical drought patterns and their linkages to large-scale climate variability over Peninsular Malaysia[J]. Hydrological Processes, 2021, 35(9): e14356. doi: 10.1002/hyp.14356
    [12] Meyers P A, Lallier-Vergés E. Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates[J]. Journal of Paleolimnology, 1999, 21(3): 345−372. doi: 10.1023/A:1008073732192
    [13] 成艾颖, 余俊清, 张丽莎, 等. XRF岩芯扫描分析方法及其在湖泊沉积研究中的应用[J]. 盐湖研究, 2010, 18(2): 7−13.

    Cheng Aiying, Yu Junqing, Zhang Lisha, et al. XRF core scanning and applications on lake sediments[J]. Journal of Salt Lake Research, 2010, 18(2): 7−13.
    [14] Sanchez-Cabeza J A, Ruiz-Fernández A C. 210Pb sediment radiochronology: an integrated formulation and classification of dating models[J]. Geochimica et Cosmochimica Acta, 2012, 82: 183−200. doi: 10.1016/j.gca.2010.12.024
    [15] Reimer P J, Austin W E N, Bard E, et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 kcal BP)[J]. Radiocarbon, 2020, 62(4): 725−757. doi: 10.1017/RDC.2020.41
    [16] Mallinson D J, Culver S J, Corbett D R, et al. Holocene coastal response to monsoons and relative sea-level changes in northeast Peninsular Malaysia[J]. Journal of Asian Earth Sciences, 2014, 91: 194−205. doi: 10.1016/j.jseaes.2014.05.005
    [17] Jaafar N M S, Nor S M M, Omar W B W, et al. Mangroves of the east coast of Peninsular Malaysia[J]. Malayan Nature Journal, 2020, 72(4): 441−450.
    [18] Fry B, Sherr E B. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems[J]. Contributions in Marine Science, 1984, 27: 13−47.
    [19] Pancost R D, Boot C S. The paleoclimatic utility of terrestrial biomarkers in marine sediments[J]. Marine Chemistry, 2004, 92(1/2/3/4): 239−261.
    [20] Leng M J, Marshall J D. Paleoclimate interpretation of stable isotope data from lake sediment archives[J]. Quaternary Science Reviews, 2004, 23(7/8): 811−831.
    [21] Redfield A C, Ketchum B H, Richards F A. The influence of organisms on the composition of seawater[J]. The Sea, 1963, 2: 26−77.
    [22] Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic matter[J]. Chemical Geology, 1994, 114(3/4): 289−302.
    [23] Valiela I, Cole M L. Comparative evidence that salt marshes and mangroves may protect seagrass meadows from land-derived nitrogen loads[J]. Ecosystems, 2002, 5(1): 92−102. doi: 10.1007/s10021-001-0058-4
    [24] Gonneea M E, Paytan A, Herrera-Silveira J A. Tracing organic matter sources and carbon burial in mangrove sediments over the past 160 years[J]. Estuarine, Coastal and Shelf Science, 2004, 61(2): 211−227. doi: 10.1016/j.ecss.2004.04.015
    [25] Moy C M, Seltzer G O, Rodbell D T, et al. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch[J]. Nature, 2002, 420(6912): 162−165. doi: 10.1038/nature01194
    [26] D’Arrigo R, Cook E R, Wilson R J, et al. On the variability of ENSO over the past six centuries[J]. Geophysical Research Letters, 2005, 32(3): L03711.
    [27] Nicholls N. Recent trends in the seasonal and temporal behaviour of the El Niño-Southern Oscillation[J]. Geophysical Research Letters, 2008, 35(19): L19703.
    [28] Richter T O, Van der Gaast S, Koster B, et al. The Avaatech XRF Core Scanner: technical description and applications to NE Atlantic sediments[J]. Geological Society, London, Special Publications, 2006, 267(1): 39−50. doi: 10.1144/GSL.SP.2006.267.01.03
    [29] Nizou J, Hanebuth T J J, Heslop D, et al. The Senegal River mud belt: A high-resolution archive of paleoclimatic change and coastal evolution[J]. Marine Geology, 2010, 278(1/2/3/4): 150−164.
    [30] Blanchet C L, Thouveny N, Vidal L, et al. Terrigenous input response to glacial/interglacial climatic variations over southern Baja California: a rock magnetic approach[J]. Quaternary Science Reviews, 2007, 26(25/26/27/28): 3118−3133.
    [31] Kleiven H F, Kissel C, Laj C, et al. Reduced North Atlantic deep water coeval with the glacial Lake Agassiz freshwater outburst[J]. Science, 2008, 319(5859): 60−64. doi: 10.1126/science.1148924
    [32] Vidal L, Bickert T, Wefer G, et al. Late Miocene stable isotope stratigraphy of SE Atlantic ODP Site 1085: relation to Messinian events[J]. Marine Geology, 2002, 180(1/2/3/4): 71−85.
    [33] Kissel C, Laj C, Kienast M, et al. Monsoon variability and deep oceanic circulation in the western equatorial Pacific over the last climatic cycle: insights from sedimentary magnetic properties and sortable silt[J]. Paleoceanography, 2010, 25(3): PA3215.
    [34] Taylor S R. The application of trace element data to problems in petrology[J]. Physics and Chemistry of the Earth, 1965, 6: 133−213. doi: 10.1016/0079-1946(65)90014-5
    [35] Fralick P W, Kronberg B I. Geochemical discrimination of clastic sedimentary rock sources[J]. Sedimentary Geology, 1997, 113(1/2): 111−124.
    [36] 梅西, 李日辉, 张训华. 南黄海DLC70-3孔晚更新世以来Rb/Zr值特征及环境意义[J]. 海洋地质前沿, 2014, 30(2): 10−17.

    Mei Xi, Li Rihui, Zhang Xunhua. Characteristics of Rb/Zr ratio of DLC70-3 core from South Yellow Sea and its environmental implication since late Pleistocene[J]. Marine Geology Frontiers, 2014, 30(2): 10−17.
    [37] 谭玲玲, 钟巍, 薛积彬, 等. 新疆巴里坤湖全新世湖泊沉积物中Zr/Rb比值特征及其环境意义[J]. 干旱区资源与环境, 2015, 29(11): 109−114.

    Tan Lingling, Zhong Wei, Xue Jibin, et al. Variation of Zr/Rb ratios from the Holocene Lacustrine sediments in Balikun Lake in Xinjiang and its environmental implications[J]. Journal of Arid Land Resources and Environment, 2015, 29(11): 109−114.
    [38] Dypvik H, Harris N B. Geochemical facies analysis of fine-grained siliciclastics using Th/U, Zr/Rb and (Zr + Rb)/Sr ratios[J]. Chemical Geology, 2001, 181(1/2/3/4): 131−146. doi: 10.1016/S0009-2541(01)00278-9
    [39] Oldfield F, Wake R, Boyle J, et al. The late-Holocene history of Gormire Lake (NE England) and its catchment: a multiproxy reconstruction of past human impact[J]. The Holocene, 2003, 13(5): 677−690. doi: 10.1191/0959683603hl654rp
    [40] Cai Wenju, Santoso A, Wang Guojian, et al. ENSO and greenhouse warming[J]. Nature Climate Change, 2015, 5(9): 849−859. doi: 10.1038/nclimate2743
    [41] McPhaden M J, Zebiak S E, Glantz M H. ENSO as an integrating concept in earth science[J]. Science, 2006, 314(5806): 1740−1745. doi: 10.1126/science.1132588
    [42] Wang Chunzai, Deser C, Yu Jinyi, et al. El Niño and southern oscillation (ENSO): a review[M]. //Glynn P W, Manzello D P, Enochs I C. Coral Reefs of the Eastern Tropical Pacific: Persistence and Loss in a Dynamic Environment. Dordrecht: Springer, 2017: 85−106.
    [43] Håkansson S. A review of various factors influencing the stable carbon isotope ratio of organic lake sediments by the change from glacial to post-glacial environmental conditions[J]. Quaternary Science Reviews, 1985, 4(2): 135−146. doi: 10.1016/0277-3791(85)90017-4
    [44] 许武成, 马劲松, 王文. 关于ENSO事件及其对中国气候影响研究的综述[J]. 气象科学, 2005, 25 (2): 212−220.

    Xu Wucheng, Ma Jinsong, Wang Wen. A review of studies on the influence of ENSO events on the climate in China[J]. Journal of the Meteorological Sciences, 2005 (2): 212−220.
    [45] 任福民, 袁媛, 孙丞虎, 等. 近30年ENSO研究进展回顾[J]. 气象科技进展, 2012, 2(3): 17−24.

    Ren Fumin, Yuan Yuan, Sun Chenghu, et al. Review of progress of ENSO studies in the past three decades[J]. Advances in Meteorological Science and Technology, 2012, 2(3): 17−24.
    [46] Tangang F, Farzanmanesh R, Mirzaei A, et al. Characteristics of precipitation extremes in Malaysia associated with El Niño and La Niña events[J]. International Journal of Climatology, 2017, 37: 696−716. doi: 10.1002/joc.5032
    [47] Tangang F, Juneng L, Ahmad S. Trend and interannual variability of temperature in Malaysia: 1961–2002[J]. Theoretical and Applied Climatology, 2007, 89(3/4): 127−141.
    [48] Sammathuria M K, Ling L K. Regional climate observation and simulation of extreme temperature and precipitation trends[C]//Proceedings of the 14th International Rainwater Catchment Systems Conference, Kuala Lumpur, Malaysia. 2009: 3−6.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  149
  • HTML全文浏览量:  58
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-01
  • 录用日期:  2024-04-30
  • 修回日期:  2024-03-06
  • 网络出版日期:  2024-05-07
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回