留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

台风“查帕卡”(2021)在粤西陆架上产生的近惯性运动研究

黄震宇 崔永生 张光 于小龙 龚文平

黄震宇,崔永生,张光,等. 台风“查帕卡”(2021)在粤西陆架上产生的近惯性运动研究[J]. 海洋学报,2024,46(4):47–64 doi: 10.12284/hyxb2024043
引用本文: 黄震宇,崔永生,张光,等. 台风“查帕卡”(2021)在粤西陆架上产生的近惯性运动研究[J]. 海洋学报,2024,46(4):47–64 doi: 10.12284/hyxb2024043
Huang Zhenyu,Cui Yongsheng,Zhang Guang, et al. Study of the near-inertial motions induced by Typhoon “Cempaka” (2021) in the continental shelf of western Guangdong[J]. Haiyang Xuebao,2024, 46(4):47–64 doi: 10.12284/hyxb2024043
Citation: Huang Zhenyu,Cui Yongsheng,Zhang Guang, et al. Study of the near-inertial motions induced by Typhoon “Cempaka” (2021) in the continental shelf of western Guangdong[J]. Haiyang Xuebao,2024, 46(4):47–64 doi: 10.12284/hyxb2024043

台风“查帕卡”(2021)在粤西陆架上产生的近惯性运动研究

doi: 10.12284/hyxb2024043
基金项目: 国家自然科学基金项目(NSFC42276169,NSFC 42106163)。
详细信息
    作者简介:

    黄震宇(1998—),男,重庆市人,主要从事近海动力学研究。E-mail:huangzhy36@mail3.sysu.edu.cn

    通讯作者:

    龚文平(1968—),男,湖北省天门市人,博士,教授,主要从事河口海岸动力学研究。E-mail:gongwp@mail.sysu.edu.cn

  • 中图分类号: P714+.2

Study of the near-inertial motions induced by Typhoon “Cempaka” (2021) in the continental shelf of western Guangdong

  • 摘要: 近惯性运动是海洋中广泛存在的一种频率接近局地惯性频率的海水运动,热带气旋是产生近惯性运动的主要动力之一。本文基于COAWST(Coupled Ocean-Atmosphere-Wave-Sediment Transport)数值模型系统,构建了一个覆盖南海北部陆架的波浪−海流耦合三维水动力模型,并对模型进行了充分验证。利用该模型模拟了2021年第7号台风“查帕卡”在粤西近海陆架上激发的近惯性运动。结果表明,近惯性动能在水平分布上有两个能量高值中心,一个在台风风速最大的近岸区域,另一个在离岸约130 km处,且第二个能量高值中心持续时间更久。在水深40 m以浅的近岸区域,近惯性运动以正压模态为主,表底层流速的相位相同,能量从表层向底层递减。随着水深逐渐增加,在水深70 m到100 m的区域,近惯性运动呈明显的两层结构,表底层近惯性运动的流速方向相反,垂向上出现两个能量高值中心,呈明显的一阶斜压模态特征。通过动力模态分解,发现部分两层结构明显的区域由一阶斜压模态和二阶斜压模态共同主导。随着水深继续增加,更高模态的近惯性运动在总的近惯性动能中占据越来越大的比重。动量平衡分析表明,在水深较浅、风速较大的近岸区域,整个水层内的动量平衡都是由垂向湍流黏性力和压强梯度力主导。而在水深较深、风速较小的离岸区域,垂向湍流黏性力集中在表层和底层,水体内部的动量平衡主要由压强梯度力、科氏力和局地加速度主导。这些结果说明近岸区域主要是风应力驱动的正压波动,而陆架区域,上混合层内的近惯性运动由风应力驱动,混合层以下的近惯性运动则是由正压的压强梯度力驱动的。
  • 图  1  台风“查帕卡”路径

    Fig.  1  The tracking of Typhoon “Cempaka”

    图  2  南海北部陆架模型范围内的水深(a)和网格(b)

    Fig.  2  The bathymetry (a) and grid (b) of the model domain

    图  3  近惯性能量的水平分布

    第一至第三列分别为台风前、台风期间、台风后的近惯性动能。黑色线为台风中心移动路径,绿色点为台风中心所在位置

    Fig.  3  The near-inertial energy horizontal distribution

    The first to third columns represent the near inertial kinetic energy before, during, and after the typhoon, respectively. The black line represents the movement path of the typhoon center, and the green dots indicate the location of the typhoon center

    图  4  分析站位空间分布

    黑线和黑点分别代表台风移动路径和台风中心位置,红色点为分析点位置

    Fig.  4  The locations of the chosen study stations along the typhoon track

    The black line and black dot represent the movement path and center position of the typhoon respectively, while the red dot represents the study stations

    图  5  S1-1至S1-5站位的表(第15层)、中(第8层)、底层(第1层)流速的旋转谱

    其中蓝色线表示顺时针旋转(CW)的成分,红色线表示逆时针旋转(CCW)的成分;阴影区表示近惯性频段

    Fig.  5  The rotary velocity spectrum for the surface (Layer 15), middle (Layer 8) and bottom layer (Layer 1) of stations S1-1 to S1-5

    blue line shows the clockwise component (CW), and the dashed red line denotes the counter-clockwise component (CCW), the shaded region shows the band of near-inertial

    图  6  S2-1至S2-5站位的表(第15层)、中(第8层)、底层(第1层)流速的旋转谱

    其中蓝色线表示顺时针旋转(CW)的成分,红色线表示逆时针旋转(CCW)的成分;阴影区表示近惯性频段

    Fig.  6  The rotary velocity spectrum for the surface,middle and bottom layer of Stations S2-1 to S2-5

    blue line shows the clockwise component (CW), and the dashed red line denotes the counter-clockwise component (CCW), the shaded region shows the band of near-inertial

    图  7  S1断面的近惯性流速

    第1行为风速矢量,第2行为东向流速u,第3行为北向流速v,黑色线为浮力频率N最大值所在深度

    Fig.  7  Timeseries of wind, near inertial current of u and v at the Transect S1

    The first row is the wind speed vector, the second row is the eastward flow velocity u, and the third row is the northward flow velocity v. The black solid line is the depth with maximum buoyancy frequency

    图  8  S2断面的近惯性流速

    第1行为风速矢量,第2行为东向流速u,第3行为北向流速v,黑色线为浮力频率N最大值所在深度

    Fig.  8  Timeseries of wind, near inertial current of u and v at the Transect S2

    The first row is the wind speed vector, the second row is the eastward flow velocity u, and the third row is the northward flow velocity v. The black solid line is the depth with maximum buoyancy frequency

    图  9  S1和S2断面的风速和近惯性动能的时间变化

    Fig.  9  Timeseries of wind speed and near inertial energy of sections S1 and S2

    图  10  7月17日至8月31日各站位的平均浮力频率(N)剖面

    Fig.  10  The vertical profiles of mean buoyancy frequency (N) from July 17 to August 31

    图  11  各模态动能占总近惯性动能的比例

    模态0表示正压模态,白线表示浮力频率N最大的位置

    Fig.  11  The vertical profiles of percentage of near inertial energy to the total kinetic energy at different stations

    Mode 0 represents the barotropic mode. The white lines denote the position of maximum N

    图  12  各模态的垂向结构

    图例1~4表示第一至第四斜压模态,0表示正压模态

    Fig.  12  Vertical structure of each mode

    Legends 1 to 4 represent the first to the fourth baroclinic mode, and 0 represents the barotropic mode.

    图  13  各模态的特征流速

    图例1~4表示第一至第四斜压模态,0表示正压模态

    Fig.  13  Characteristic flow speed of each mode

    Legends 1 to 4 represent the first to fourth baroclinic modes and 0 represents the barotropic modes

    图  14  各站位的垂向流速剪切情况

    Fig.  14  The vertical flow speed shear at each station

    图  15  S1-1站位处的动量平衡分析

    从上到下依次为水深0、0.38H、0.68H和0.98H的水层;图中各项意义:acc(加速度项);cor(科氏力项);hadv(水平对流项);prsgrd(压强梯度项);vvisc(垂向湍流黏性项)

    Fig.  15  The time evolution of momentum terms at Station S1-1

    from top to bottom the water layers at depths of 0, 0.38H, 0.68H, and 0.98H; acc is the local acceleration, cor is the Coriolis force, hadv is the horizontal advection, prsgrd is the pressure gradient force, and vvisc is the vertical friction

    图  16  S1-3站位处的动量平衡分析

    从上到下依次为水深0、0.38H、0.68H和0.98H的水层;图中各项意义:acc(加速度项);cor(科氏力项);hadv(水平对流项);prsgrd(压强梯度项);vvisc(垂向湍流黏性项)

    Fig.  16  The time evolution of momentum terms at Station S1-3

    from top to bottom the Water layers at depths of 0, 0.38H, 0.68H, and 0.98H; acc is the local acceleration, cor is the Coriolis force, hadv is the horizontal advection, prsgrd is the pressure gradient force, and vvisc is the vertical friction

    图  17  S2-1站位处的动量平衡分析

    从上到下依次为水深0、0.38H、0.68H和0.98H的水层;图中各项意义:acc(加速度项);cor(科氏力项);hadv(水平对流项);prsgrd(压强梯度项);vvisc(垂向湍流黏性项)

    Fig.  17  The time evolution of momentum terms at Station S2-1

    from top to bottom the Water layers at depths of 0, 0.38H, 0.68H, and 0.98H; acc is the local acceleration, cor is the Coriolis force, hadv is the horizontal advection, prsgrd is the pressure gradient force, and vvisc is the vertical friction

    图  18  S2-3站位处的动量平衡分析

    从上到下依次为水深0、0.38H、0.68H和0.98H的水层;图中各项意义:acc(加速度项);cor(科氏力项);hadv(水平对流项);prsgrd(压强梯度项);vvisc(垂向湍流黏性项)

    Fig.  18  The time evolution of momentum terms at Station S2-3

    from top to bottom the Water layers at depths of 0, 0.38H, 0.68H, and 0.98H; acc is the local acceleration, cor is the Coriolis force, hadv is the horizontal advection, prsgrd is the pressure gradient force, and vvisc is the vertical friction

    表  1  各站位水层深度

    Tab.  1  The depth of surface, middle, bottom layers of each station

    站位 表层/m 中层/m 底层/m
    S1-1 0.05 10.05 25.96
    S1-2 0.08 17.40 44.96
    S1-3 0.15 32.21 83.21
    S1-4 0.25 53.61 138.46
    S1-5 0.80 173.96 449.33
    S2-1 0.03 6.32 16.33
    S2-2 0.07 15.54 40.13
    S2-3 0.14 29.62 76.52
    S2-4 0.18 38.68 99.90
    S2-5 0.59 129.50 334.49
    下载: 导出CSV

    表  2  近惯性动能衰减时间尺度(单位:惯性周期,IP)

    Tab.  2  The timescale of the decay of near inertial energy(unit: Inertia Period, IP)

    S1-1 S1-2 S1-3 S1-4 S1-5 S2-1 S2-2 S2-3 S2-4 S2-5
    上层 1.61 1.19 1.04 2.91 2.37 1.69 0.85 3.97 2.26 2.23
    下层 1.75 1.20 1.60 2.34 4.58 1.55 1.97 3.05 5.62 2.57
    下载: 导出CSV
  • [1] Alford M H, Mackinnon J A, Simmons H L, et al. Near-inertial internal gravity waves in the ocean[J]. Annual Review of Marine Science, 2016, 8: 95−123. doi: 10.1146/annurev-marine-010814-015746
    [2] Puig P, Palanques A, Guillén J. Near-bottom suspended sediment variability caused by storms and near-inertial internal waves on the Ebro mid continental shelf (NW Mediterranean)[J]. Marine Geology, 2001, 178(1/4): 81−93.
    [3] Price J F. Upper ocean response to a hurricane[J]. Journal of Physical Oceanography, 1981, 11(2): 153−175. doi: 10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2
    [4] Kundu P K, Chao S Y, McCreary J P. Transient coastal currents and inertio-gravity waves[J]. Deep-Sea Research Part A. Oceanographic Research Papers, 1983, 30(10): 1059−1082. doi: 10.1016/0198-0149(83)90061-4
    [5] Millot C, Crépon M. Inertial oscillations on the continental shelf of the Gulf of Lions-Observations and theory[J]. Journal of Physical Oceanography, 1981, 11(5): 639−657. doi: 10.1175/1520-0485(1981)011<0639:IOOTCS>2.0.CO;2
    [6] Mayer D A, Mofjeld H O, Leaman K D. Near-inertial internal waves observed on the outer shelf in the middle atlantic bight in the wake of hurricane belle[J]. Journal of Physical Oceanography, 1981, 11(1): 87−106. doi: 10.1175/1520-0485(1981)011<0087:NIIWOO>2.0.CO;2
    [7] De Young B, Tang C L. Storm-forced baroclinic near-inertial currents on the grand bank[J]. Journal of Physical Oceanography, 1990, 20(11): 1725−1741. doi: 10.1175/1520-0485(1990)020<1725:SFBNIC>2.0.CO;2
    [8] Tintoré J, Wang Dongping, Garćia E, et al. Near-inertial motions in the coastal ocean[J]. Journal of Marine Systems, 1995, 6(4): 301−312. doi: 10.1016/0924-7963(94)00030-F
    [9] MacKinnon J A, Gregg M C. Near-inertial waves on the new England shelf: the role of evolving stratification, turbulent dissipation, and bottom drag[J]. Journal of Physical Oceanography, 2005, 35(12): 2408−2424. doi: 10.1175/JPO2822.1
    [10] Shearman R K. Observations of near-inertial current variability on the New England shelf[J]. Journal of Geophysical Research: Oceans, 2005, 110(C2): C02012, doi: 10.1029/2004JC002341
    [11] Chen Shengli, Chen Daoyi, Xing Jiuxing. A study on some basic features of inertial oscillations and near-inertial internal waves[J]. Ocean Science, 2017, 13(5): 829−836. doi: 10.5194/os-13-829-2017
    [12] Hu Yibo, Yu Fei, Chen Zifei, et al. Two near-inertial peaks in antiphase controlled by stratification and tides in the Yellow Sea[J]. Frontiers in Marine Science, 2023, 9: 1081869. doi: 10.3389/fmars.2022.1081869
    [13] 陈杏文, 邱春华, 张恒, 等. 珠江口鸡啼门近海海洋对台风的响应[J]. 海洋与湖沼, 2022, 53(4): 872−881. doi: 10.11693/hyhz20220100001

    Chen Xingwen, Qiu Chunhua, Zhang Heng, et al. Response to typhoons in coastal waters at Jitimen in Zhujiang River Estuary[J]. Oceanologiaet Limnologia Sinica, 2022, 53(4): 872−881. doi: 10.11693/hyhz20220100001
    [14] Warner J C, Armstrong B, He Ruoying, et al. Development of a coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system[J]. Ocean Modelling, 2010, 35(3): 230−244. doi: 10.1016/j.ocemod.2010.07.010
    [15] Song Yuhe, Haidvogel D. A semi-implicit ocean circulation model using a generalized topography-following coordinate system[J]. Journal of Computational Physics, 1994, 115(1): 228−244. doi: 10.1006/jcph.1994.1189
    [16] Mellor G L, Yamada T. Development of a turbulence closure model for geophysical fluid problems[J]. Reviews of Geophysics, 1982, 20(4): 851−875. doi: 10.1029/RG020i004p00851
    [17] Smagorinsky J. General circulation experiments with the primitive equations I. the basic experiment[J]. Monthly Weather Review, 1963, 91(3): 99−164. doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
    [18] Flather R A. A tidal model of the northwest European continental shelf[J]. Memoires Société Royale des Sciences de Liège, 1976, 10(6): 141−164.
    [19] Chapman D C. Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model[J]. Journal of Physical Oceanography, 1985, 15(8): 1060−1075. doi: 10.1175/1520-0485(1985)015<1060:NTOCSO>2.0.CO;2
    [20] Orlanski I. A simple boundary condition for unbounded hyperbolic flows[J]. Journal of Computational Physics, 1976, 21(3): 251−269. doi: 10.1016/0021-9991(76)90023-1
    [21] Holland G J. An analytic model of the wind and pressure profiles in hurricanes[J]. Monthly Weather Review, 1980, 108(8): 1212−1218. doi: 10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2
    [22] Chen Yuren, Chen Lianghong, Zhang Heng, et al. Effects of wave-current interaction on the Pearl River Estuary during Typhoon Hato[J]. Estuarine, Coastal and Shelf Science, 2019, 228: 106364. doi: 10.1016/j.ecss.2019.106364
    [23] 黄震宇. 台风在南海北部陆架引起的近惯性运动研究——以台风“查帕卡”为例[D]. 广州: 中山大学, 2023: 69.

    Huang Zhenyu. The near-inertial motions induced by typhoons on the northern shelf of the South China Sea ——A case study of Typhoon “Cempaka”[D]. Guangzhou: Sun Yat-sen University, 2023: 69.
    [24] Gill A E. Atmosphere-Ocean Dynamics[M]. New York: Academic Press, 1982: 681.
    [25] Griffiths S D, Grimshaw R H J. Internal tide generation at the continental shelf modeled using a modal decomposition: two-dimensional results[J]. Journal of Physical Oceanography, 2007, 37(3): 428−451. doi: 10.1175/JPO3068.1
    [26] Cao Anzhou, Li Bingtian, Lü Xianqing. Extraction of internal tidal currents and reconstruction of full-depth tidal currents from mooring observations[J]. Journal of Atmospheric and Oceanic Technology, 2015, 32(7): 1414−1424. doi: 10.1175/JTECH-D-14-00221.1
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  39
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-28
  • 修回日期:  2024-04-01
  • 网络出版日期:  2024-05-11
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回