留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黑潮延伸体海域亚中尺度垂向热量输运的季节变化特征

郭贵正 李刚 何宜军 赵若楠

郭贵正,李刚,何宜军,等. 黑潮延伸体海域亚中尺度垂向热量输运的季节变化特征[J]. 海洋学报,2024,46(4):23–33 doi: 10.12284/hyxb2024033
引用本文: 郭贵正,李刚,何宜军,等. 黑潮延伸体海域亚中尺度垂向热量输运的季节变化特征[J]. 海洋学报,2024,46(4):23–33 doi: 10.12284/hyxb2024033
Guo Guizheng,Li Gang,He Yijun, et al. Seasonal variability of submesoscale vertical heat transport in the Kuroshio Extension[J]. Haiyang Xuebao,2024, 46(4):23–33 doi: 10.12284/hyxb2024033
Citation: Guo Guizheng,Li Gang,He Yijun, et al. Seasonal variability of submesoscale vertical heat transport in the Kuroshio Extension[J]. Haiyang Xuebao,2024, 46(4):23–33 doi: 10.12284/hyxb2024033

黑潮延伸体海域亚中尺度垂向热量输运的季节变化特征

doi: 10.12284/hyxb2024033
基金项目: 国家自然科学基金重大仪器设备研制项目(42027805)。
详细信息
    作者简介:

    郭贵正(1998—),男,山东省临沂市人,主要从事海洋亚中尺度过程研究。E-mail:guizheng_g@163.com

    通讯作者:

    何宜军(1963—),男,湖南省临湘市人,教授,从事海洋微波遥感研究。E-mail:yjhe@nuist.edu.cn

  • 中图分类号: P733.4

Seasonal variability of submesoscale vertical heat transport in the Kuroshio Extension

  • 摘要: 亚中尺度过程伴随着强烈的垂向速度,显著影响着海洋表面与海洋内部之间热量、浮力和质量等示踪物的垂向输运。基于(1/48)°的LLC4320模式结果,本文对黑潮延伸体海域亚中尺度垂向热量输运的季节变化进行了研究。研究结果表明,黑潮延伸体海域亚中尺度垂向热量输运具有明显的春冬强、夏秋弱的季节变化特征。上层海洋净亚中尺度垂向热通量变化与混合层深度变化趋势较为一致,在混合层上方整体呈现出向上的亚中尺度热量输运,混合层下方也存在很强的亚中尺度垂向热量输运,但呈现正负交替的变化特征,净亚中尺度垂向热量输运较小。垂向热通量波数频率协同谱分析表明,混合层下方的亚中尺度垂向热量输运可能是由线性内波引起的,但线性内波引起的向上与向下的垂向热量输运相互抵消,在季节平均后净垂向热量输运较小。
  • 图  1  黑潮延伸体10 m层年平均温度的空间分布

    R1、R2和R3是研究的子区域

    Fig.  1  The spatial distribution of the annual average temperature at the 10-meter depth of the Kuroshio Extension

    R1, R2, and R3 are the sub-areas of the study

    图  2  黑潮延伸体区域2012年1月15日40 m深度动能谱

    Fig.  2  Kinetic energy spectrum at a depth of 40 m in the Kuroshio Extension region on January 15, 2012

    图  3  春(a)、夏(b)、秋(c)、冬(d)季节平均亚中尺度垂向热通量的空间分布

    Fig.  3  Spatial distribution of seasonally averaged submesoscale vertical heat transport in spring (a), summer (b), autumn (c), and winter (d)

    图  4  R1(a)、R2(b)和R3(c)区域平均亚中尺度垂向热通量及混合层深度随时间的变化情况

    Fig.  4  The time series of submesoscale vertical heat flux and mixed layer depth averaged over regions R1 (a), R2 (b) and R3 (c)

    图  5  R1 (a)、R2 (b)和R3 (c)区域季节平均垂向热通量随深度的变化情况

    Fig.  5  Seasonal average vertical heat flux variation with depth in regions R1 (a), R2 (b), and R3 (c)

    图  6  R1(a)、R2(b)和R3(c)区域平均亚中尺度垂向热通量随深度、时间的变化情况

    黑色曲线为混合层深度

    Fig.  6  Vertical and temporal variations of the means of submesoscale vertical heat flux in regions R1 (a), R2 (b), and R3 (c)

    The black line representing the mixed layer depth

    图  7  相对涡度在1月15日(a, c)和7月15日(b, d)的空间分布

    a和b为40 m层,c和d为200 m层,均以行星涡度标准化

    Fig.  7  The spatial distributions of relative vorticity on January 15th (a, c) and July 15th (b, d)

    a and b are at the 40 m level, c and d are at the 200 m level, all normalized by planetary vorticity

    图  8  垂向热通量在1月15日(a, c)和7月15日(b, d)的空间分布

    a和b为40 m层,c和d为200 m层

    Fig.  8  Spatial distribution of vertical heat flux at depths of 40 m (a, b) and 200 m (c, d) on January 15th (a, c) and July 15th (b, d)

    a and b are at the 40 m level, c and d are at the 200 m level

    图  9  水平浮力梯度在1月15日(a, c)和7月15日(b, d)的空间分布

    a和b为40 m层,c和d为200 m层

    Fig.  9  Spatial distribution of horizontal buoyancy gradient on January 15th (a, c) and July 15th (b, d)

    a and b are at the 40 m level, c and d are at the 200 m lever

    图  10  冬季R1(a、d)、R2(b、e)和R3(c、f)区域在40 m(a、b、c)和200 m(d、e、f)深垂向热通量的波数频率协同谱

    蓝色实线分别为第一斜压模态的内波频散曲线(左)和第十斜压模态的内波频散曲线(右),蓝色虚线为M2内潮频率,黑色实线为惯性频率f,黑色虚线分别代表7 d和50 km所在的频率和波数。其中蓝色实线之间的区域为线性内波影响区,空间尺度小于50 km,处于第十斜压模态的内波频散曲线与7 d频率之间的为亚中尺度影响区,空间尺度大于50 km,时间频率大于7 d的为中尺度影响区

    Fig.  10  Wavenumber-frequency co-spectra of vertical heat flux at depths of 40 m (a, b, c) and 200 m (d, e, f) in regions R1(a, d), R2(b, e), and R3(c, f) during winter

    The solid blue lines represent the dispersion curves of the first baroclinic mode (left) and the tenth baroclinic mode (right) of internal waves. The blue dashed lines represent the M2 internal tide frequency, the solid black line represents the inertial frequency f, and the black dashed lines represent the frequencies and wavenumbers corresponding to 7 days and 50 km. The area between the solid blue lines is designated as the linear internal gravity wave influence zone. The region with a spatial scale less than 50 km, situated between the internal wave dispersion curve of the tenth baroclinic mode and a frequency of 7 days, is defined as the submesoscale influence zone. The region with a spatial scale greater than 50 km and a temporal frequency greater than 7 days is defined as the mesoscale influence zone

    图  11  夏季R1(a、d)、R2(b、e)和R3(c、f)区域在40 m(a、b、c)和200 m(d、e、f)深垂向热通量的波数频率协同谱

    蓝色实线分别为第一斜压模态的内波频散曲线(左)和第十斜压模态的内波频散曲线(右),蓝色虚线为M2内潮频率,黑色实线为惯性频率f,黑色虚线分别代表7 d和50 km所在的频率和波数。其中蓝色实线之间的区域定为线性内波影响区,空间尺度小于50 km,处于第十斜压模态的内波频散曲线与7 d频率之间的为亚中尺度影响区,空间尺度大于50 km,时间频率大于7 d的为中尺度影响区

    Fig.  11  Wavenumber-frequency co-spectra of vertical heat flux at depths of 40 m (a, b, c) and 200 m (d, e, f) in regions R1(a, d), R2(b, e), and R3(c, f) during summer

    The solid blue lines represent the dispersion curves of the first baroclinic mode (left) and the tenth baroclinic mode (right) of internal waves. The blue dashed lines represent the M2 internal tide frequency, the solid black line represents the inertial frequency f, and the black dashed lines represent the frequencies and wavenumbers corresponding to 7 days and 50 km. The area between the solid blue lines is designated as the linear internal gravity wave influence zone. The region with a spatial scale less than 50 km, situated between the internal wave dispersion curve of the tenth baroclinic mode and a frequency of 7 days, is defined as the submesoscale influence zone. The region with a spatial scale greater than 50 km and a temporal frequency greater than 7 days is defined as the mesoscale influence zone

  • [1] McWilliams J C. Submesoscale currents in the ocean[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472(2189): 20160117. doi: 10.1098/rspa.2016.0117
    [2] Capet X, McWilliams J C, Molemaker M J, et al. Mesoscale to submesoscale transition in the California current system. Part I: flow structure, eddy flux, and observational tests[J]. Journal of Physical Oceanography, 2008, 38(1): 29−43. doi: 10.1175/2007JPO3671.1
    [3] Thomas L, Ferrari R. Friction, frontogenesis, and the stratification of the surface mixed layer[J]. Journal of Physical Oceanography, 2008, 38(11): 2501−2518. doi: 10.1175/2008JPO3797.1
    [4] Zhang Zhiwei, Tian Jiwei, Qiu Bo, et al. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea[J]. Scientific Reports, 2016, 6(1): 24349. doi: 10.1038/srep24349
    [5] Zhang Zhiwei, Liu Zhiyu, Richards K, et al. Elevated diapycnalmixing by a subthermocline eddy in the western equatorial Pacific[J]. Geophysical Research Letters, 2019, 46(5): 2628−2636. doi: 10.1029/2018GL081512
    [6] Zhang Zhengguang, Wang Wei, Qiu Bo. Oceanic mass transport by mesoscale eddies[J]. Science, 2014, 345(6194): 322−324. doi: 10.1126/science.1252418
    [7] Su Zhan, Wang Jinbo, Klein P, et al. Ocean submesoscales as a key component of the global heat budget[J]. Nature Communications, 2018, 9(1): 775. doi: 10.1038/s41467-018-02983-w
    [8] Zhang Zhiwei, Liu Yuelin, Qiu Bo, et al. Submesoscale inverse energy cascade enhances Southern Ocean eddy heat transport[J]. Nature Communications, 2023, 14(1): 1335. doi: 10.1038/s41467-023-36991-2
    [9] Liu Zhengyu, He Chengfei, Lu Feiyu. Local and remote responses of atmospheric and oceanic heat transports to climate forcing: compensation versus collaboration[J]. Journal of Climate, 2018, 31(16): 6445−6460. doi: 10.1175/JCLI-D-17-0675.1
    [10] Nummelin A, Li C, Hezel P J. Connecting ocean heat transport changes from the midlatitudes to the Arctic Ocean[J]. Geophysical Research Letters, 2017, 44(4): 1899−1908. doi: 10.1002/2016GL071333
    [11] Yang Haiyuan, Qiu Bo, Chang Ping, et al. Decadal variability of eddy characteristics and energetics in the kuroshio extension: unstable versus stable states[J]. Journal of Geophysical Research: Oceans, 2018, 123(9): 6653−6669. doi: 10.1029/2018JC014081
    [12] Su Zhan, Torres H, Klein P, et al. High-frequency submesoscale motions enhance the upward vertical heat transport in the global ocean[J]. Journal of Geophysical Research: Oceans, 2020, 125(9): e2020JC016544. doi: 10.1029/2020JC016544
    [13] Wang Qinyue, Dong Changming, Dong Jihai, et al. Submesoscale processes-induced vertical heat transport modulated by oceanic mesoscale eddies[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2022, 202: 105138. doi: 10.1016/j.dsr2.2022.105138
    [14] Dong Jihai, Fox-Kemper B, Zhang Hong, et al. The seasonality of submesoscale energy production, content, and cascade[J]. Geophysical Research Letters, 2020, 47(6): e2020GL087388. doi: 10.1029/2020GL087388
    [15] Rocha C B, Gille S T, Chereskin T K, et al. Seasonality of submesoscale dynamics in the kuroshio extension[J]. Geophysical Research Letters, 2016, 43(21): 11304−11311.
    [16] Pan Hao, Qiu Chunhua, Liang Hong, et al. Different vertical heat transport induced by submesoscale motions in the shelf and open sea of the northwestern South China Sea[J]. Frontiers in Marine Science, 2023, 10: 1236864. doi: 10.3389/fmars.2023.1236864
    [17] 王青玥. 伴随海洋中尺度涡旋的亚中尺度过程及其对垂向热量输运的贡献[D]. 南京: 南京信息工程大学, 2023.

    Wang Qingyue. Submetascale processes associated with mesoscale eddies in the ocean and their contribution to vertical heat transport[D]. Nanjing: Nanjing University of Information Science and Technology, 2023.
    [18] Zhong Yishen, Bracco A. Submesoscale impacts on horizontal and vertical transport in the Gulf of Mexico[J]. Journal of Geophysical Research: Oceans, 2013, 118(10): 5651−5668. doi: 10.1002/jgrc.20402
    [19] Huang Xiaolong, Jing Zhiyou, Zheng Ruixi, et al. Dynamical analysis of submesoscale fronts associated with wind-forced offshore jet in the western South China Sea[J]. Acta Oceanologica Sinica, 2020, 39(11): 1−12.
    [20] Zhang Lei, Dong Jihai. Dynamic characteristics of a submesoscale front and associated heat fluxes over the northeastern South China Sea shelf[J]. Atmosphere-Ocean, 2021, 59(3): 190−200. doi: 10.1080/07055900.2021.1958741
    [21] Aparco-Lara J, Torres H S, Gomez-Valdes J. Impact of atmospheric cooling on the high-frequency submesoscale vertical heat flux[J]. Journal of Geophysical Research: Oceans, 2023, 128(9): e2023JC020029. doi: 10.1029/2023JC020029
    [22] Kara A B, Rochford P A, Hurlburt H E. Mixed layer depth variability over the global ocean[J]. Journal of Geophysical Research: Oceans, 2003, 108(C3): 3079.
    [23] Torres H S, Klein P, Menemenlis D, et al. Partitioning ocean motions into balanced motions and internal gravity waves: a modeling study in anticipation of future space missions[J]. Journal of Geophysical Research: Oceans, 2018, 123(11): 8084−8105. doi: 10.1029/2018JC014438
    [24] 罗士浩, 经志友, 闫桐, 等. 黑潮延伸体海域次中尺度过程的季节变化研究[J]. 热带海洋学报, 2021, 40(1): 1−11.

    Luo Shihao, Jing Zhiyou, Yan Tong, et al. Seasonal variability of submesoscale flows in the Kuroshio Extension[J]. Journal of TropicalOceanography, 2021, 40(1): 1−11.
    [25] 张雨辰, 张新城, 张金超, 等. 南海亚中尺度过程的时空特征与垂向热量输运研究[J]. 中国海洋大学学报, 2020, 50(12): 1−11.

    Zhang Yuchen, Zhang Xincheng, Zhang Jinchao, et al. Spatiotemporal characteristics and vertical heat transport of submesoscale processes in the South China Sea[J]. Periodical of Ocean University of China, 2020, 50(12): 1−11.
    [26] Liu Zhiying, Liao Guanghong, Hu Xiaokai, et al. Aspect ratio of eddies inferred from Argo floats and satellite altimeter data in the ocean[J]. Journal of Geophysical Research: Oceans, 2020, 125(1): e2019JC015555. doi: 10.1029/2019JC015555
    [27] Jing Zhiyou, Fox-Kemper B, Cao Haijin, et al. Submesoscale fronts and their dynamical processes associated with symmetric instability in the northwest Pacific subtropical ocean[J]. Journal of Physical Oceanography, 2021, 51(1): 83−100. doi: 10.1175/JPO-D-20-0076.1
    [28] Fox-Kemper B, Ferrari R, Hallberg R. Parameterization of mixed layer eddies. Part I: theory and diagnosis[J]. Journal of Physical Oceanography, 2008, 38(6): 1145−1165. doi: 10.1175/2007JPO3792.1
    [29] Rocha C B, Chereskin T K, Gille S T, et al. Mesoscale to submesoscale wavenumber spectra in drake passage[J]. Journal of Physical Oceanography, 2016, 46(2): 601−620. doi: 10.1175/JPO-D-15-0087.1
    [30] Yoo J G, Kim S Y, Kim H S. Spectral descriptions of submesoscale surface circulation in a coastal region[J]. Journal of Geophysical Research: Oceans, 2018, 123(6): 4224−4249. doi: 10.1029/2016JC012517
    [31] Cao Haijin, Jing Zhiyou. Submesoscale ageostrophic motions within and below the mixed layer of the northwestern Pacific Ocean[J]. Journal of Geophysical Research: Oceans, 2022, 127(2): e2021JC017812. doi: 10.1029/2021JC017812
    [32] Barkan R, Winters K B, McWilliams J C. Stimulated imbalance and the enhancement of eddy kinetic energy dissipation by internal waves[J]. Journal of Physical Oceanography, 2017, 47(1): 181−198. doi: 10.1175/JPO-D-16-0117.1
  • 加载中
图(11)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  93
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-24
  • 修回日期:  2024-03-18
  • 网络出版日期:  2024-05-16
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回