留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧同位素3早期以来千年尺度气候事件在日本海北部的磁学记录

邹庆超 石学法 葛淑兰 吴永华 邹建军 贺湘锋 Sergey A.Gorbarenko 刘建兴

邹庆超,石学法,葛淑兰,等. 氧同位素3早期以来千年尺度气候事件在日本海北部的磁学记录[J]. 海洋学报,2024,46(4):106–121 doi: 10.12284/hyxb2024029
引用本文: 邹庆超,石学法,葛淑兰,等. 氧同位素3早期以来千年尺度气候事件在日本海北部的磁学记录[J]. 海洋学报,2024,46(4):106–121 doi: 10.12284/hyxb2024029
Zou Qingchao,Shi Xuefa,Ge Shulan, et al. Magnetic recordings of millennium-scale climate events in the northern Japan Sea since the early MIS 3[J]. Haiyang Xuebao,2024, 46(4):106–121 doi: 10.12284/hyxb2024029
Citation: Zou Qingchao,Shi Xuefa,Ge Shulan, et al. Magnetic recordings of millennium-scale climate events in the northern Japan Sea since the early MIS 3[J]. Haiyang Xuebao,2024, 46(4):106–121 doi: 10.12284/hyxb2024029

氧同位素3早期以来千年尺度气候事件在日本海北部的磁学记录

doi: 10.12284/hyxb2024029
基金项目: 中央级公益科研院所基本科研业务费专项项目(2021S01);国家自然科学基金项目(U1606401, 41976078)。
详细信息
    作者简介:

    邹庆超(1999—),男,山东省聊城市人,主要从事海洋地质方面研究。E-mail:17852158833@163.com

    通讯作者:

    刘建兴(1987—),男,山东省临沭县人,博士,研究员,主要从事古地磁与环境磁学研究。E-mail:jxliu@fio.org.cn

  • 中图分类号: P736.3

Magnetic recordings of millennium-scale climate events in the northern Japan Sea since the early MIS 3

  • 摘要: 日本海是西北太平洋最大的边缘海,长期以来普遍认为其沉积物处于强烈的还原环境中而导致相应的磁学信号非常微弱,以致常用的磁学方法在该区的应用一直受限。为深入探讨磁学指标在日本海古环境与古海洋学研究中是否有效,本文对位于研究程度相对薄弱的北部一根626 cm长的柱状沉积物岩心(LV87-2-3孔,水深740 m)开展了系统的岩石磁学测试分析以及高分辨率的AMS14C测年和粒度分析。结果显示岩心系约48.3 ka BP以来的沉积记录,其55 cm以下层位的原生亚铁磁性矿物(主要为磁铁矿)已被大量还原而生成黄铁矿,导致磁性极弱。这与Dansgaard-Oeschger(D-O)旋回间冰阶水体分层加强和表层生产力提高等因素密切相关。然而,在此背景下仍存在4个以高矫顽力矿物(如赤铁矿和针铁矿)占比较高为明显特征的强磁性层位,即“硬磁异常”层;其很好地对应了海因里希(Heinrich)事件,指示了东亚冬季风(EAWM)增强和高盐度对马暖流(TWC)注入而导致的相对减弱的还原环境。上述变化在沉积物粒度上却未见清晰体现。因此,该研究不仅表明磁学参数对于指示末次冰期日本海古海洋与古环境演化的作用不容忽视,同时也为后续相关工作提供了新视角和新思路。
  • 图  1  日本海及其周边区域概况和部分钻孔分布情况

    a.日本海及其邻近区域的洋流分布,蓝色箭头表示寒流,红色箭头表示暖流;b、c. 本文所研究的LV87-2-3孔的位置及周边地理环境,b为平面图,c为立体图

    Fig.  1  Regional settings of the Japan Sea and its surrounding area and the locations of partial sediment cores

    a. Distribution of ocean currents in Japan Sea and its surrounding area, blue arrows show cold currents, while red arrows show warm currents; b, c. the location and surrounding geographical environment of LV87-2-3 core researched in this paper, b is a plan view, while c is a 3D view

    图  2  日本海北部LV87-2-3孔岩心的基本沉积学特征和年龄框架

    a. 岩心照片;b. 岩心沉积物三组分相对含量随深度的变化;c. 岩心平均粒径随深度的变化;d. 岩心AMS14C年龄(实心方块)随深度的变化(图中虚线为根据最下方两个测年点的线性外推);e. 根据AMS14C年龄恢复的钻孔不同时期的平均沉积速率随深度的变化

    Fig.  2  Basic sedimentological characteristics and age model of the studied sediment Core LV87-2-3 from the northern Japan Sea

    a. Photograph of the core; b. the variations of the relative content of the three components of the sediment along with depth of the core; c. main grain-size; d. the AMS 14C age of the core solid squarey, varies with depth (the dashed lines in the figure are linear extrapolations from the bottom two dating points); e. main sedimentation rate in different periods of the sediment core based on AMS14C age, along with depth of the core

    图  3  日本海LV87-2-3孔岩心的岩石磁学参数以及氧化还原敏感元素Mn含量随深度的变化

    a. 质量磁化率(χ);b. 非磁滞剩磁(ARM);c. 饱和等温剩磁(SIRM);d. 高矫顽力矿物含量(以HIRM表示;蓝线和紫线分别代表反向场为0.3 T和0.1 T(对数模式)对应的值);e. 低矫顽力矿物相对含量(以S比值表示;蓝线和紫线分别代表反向场为0.3 T和0.1 T对应的值);f. 矫顽力(Bc, 蓝线)和剩磁矫顽力(Bcr, 紫线);g. 岩心XRF得到的氧化还原敏感元素Mn含量(为尽量消除粒度对元素富集程度的影响,以Mn/Ti示之)。a−c. 蓝线和紫线分别为实际测量值与其相应的对数值(注:对数模式中岩心上部强磁性层位未展示)。图中浅蓝色竖条带标出的为高矫顽力组分含量相对高的层位,即后文中所指的“硬磁异常”层。图上方红色倒三角指示用来做进一步岩石磁学分析的3个代表样品的位置

    Fig.  3  The variations of rock magnetic parameters and the contents of redox sensitive element Mnalong with depth of the Core LV87-2-3 from the northern Japan Sea.

    a. Mass-specific magnetic susceptibility (χ); b. anhysteretic remanent magnetization (ARM); c. saturation isothermal remanent magnetization (SIRM); d. the content of hard/high-coercivity minenal (represented by HIRM; the blue and purple lines represent values corresponding to reverse fields of 0.3T and 0.1T (logarithmic mode), respectively); e. the relative content of low-coercivity minenal (represented by S-ratio; the blue line and purple lines represent values corresponding to the reverse fields of 0.3T and 0.1T, respectively); f. coercivity (Bc, blue line) and remanent coercivity (Bcr, purple line); g. the contents of redox sensitive element Mn derived from XRF measurement (indicated as Mn/Ti ratio to eliminate the effect of grain-size on element enrichmentas far as possible). The blue and purple lines in a−c are the actual measured values and their corresponding pairs, respectively. The light blue vertical bands in the figure indicate the layers with relatively high content of high coercivity components, i.e., the layers referred to later as “hard magnetic anomalies” layers. The red inverted triangles at the top of the figure indicate the layers of the representative 3 samples used for further rock-magnetic analyses

    图  4  日本海LV87-2-3孔代表性样品的岩石磁学特征

    a−c. 等温剩磁(IRM)获得曲线;d−f. 基于IRM获得曲线的矫顽力谱分解结果;g−i. 一阶反转曲线(FORC)图;j−l. 低温磁学曲线(左侧纵坐标指示20 K下施加2.5 T场获得的IRM随温度的变化,右侧纵坐标则为IRM对温度的一阶导数)

    Fig.  4  Rock magnetic properties of representative samples for the sediment Core LV87-2-3 from the Japan Sea

    a−c. Isothermal remanent magnetization IRM acquisition curves; d−f. decomposition of coercivity IRM acquisition curves; g−i. first-order Reversal Curve (FORC) diagrams; j−l. low-temperature magnetic curves (the left vertical coordinate indicates the variation of IRM with temperature acquired by applying a 2.5 T field at 20 K, while the right vertical coordinate is the first-order derivative of IRM with respect to temperature)

    图  5  日本海LV87-2-3孔(岩心200 cm以下层位)岩石磁学和粒度参数随深度的变化与全球海平面和其他地区已有气候曲线的对比

    a−d 依次为LV87-2-3孔(岩心200 cm以下层位)剩磁矫顽力(Bcr)、剩磁矫顽力高于0.1 T的矿物含量(HIRM−0.1 T)、剩磁矫顽力低于0.3 T矿物的相对含量(S−0.3 T)、平均粒径;e−h 依次为全球海平面变化[70]、指示东亚冬季风(EAWM)强度的中国黄土平均粒径[41]、指示东亚夏季风(EASM)强度的中国石笋氧同位素记录[71]、指示D-O旋回冰阶−间冰阶波动的格陵兰冰芯(GISP2)的氧同位素曲线[69];图中浅蓝色竖条带标出的为高矫顽力组分含量相对高的层位,称作“硬磁异常”层,而深蓝色条带对应的为新仙女木事件以及前4次Heinrich事件

    Fig.  5  The variations of rock magnetic and grain-size parameters along with depth for sediment Core LV87-2-3 (below 200 cm) from the Japan Sea compared with global sea level and reported climate curves in other regions

    a−d are Bcr, the mineral content of Bcr higher than 0.1 T (HIRM−0.1T), the relative mineral content of Bcr lower than 0.3 T (S−0.3 T) and main grain-size, respectively, for sediment Core LV87-2-3 (below 200 cm); e−h are global sea level change[70], mean grain-size of loess in China[41] indicating the intensity of EAWM, oxygen isotope curves from stalagmite records in China[69] indicating the intensity of EASM, and GISP2 δ18O stack[67] indicating stadial-interstadial fluctuations of the D-O cycle. The light blue vertical bands in the figure indicate the layers with relatively high content of high coercivity components named “hard magnetic anomalies” layers; while the deep blue vertical bands in the figure correspond the Younger Dryas event and first four Heinrich Events

    图  6  日本海北部末次冰期以来D-O旋回间冰阶(a)与Heinrich事件期间(b)不同沉积环境条件下的磁性矿物变化示意图

    ECSCW:东海沿岸流;TWC:对马暖流;JSPW:日本海底层水

    Fig.  6  A schematic illustration for the changes of magnetic mineral in different sedimentary environment, which compares interstadials in D-O cycle (a) with stages of the Heinrich Events (b) since the last glacial in the Japan Sea.

    ECSCW: East China Sea Coastal Water; TWC: Tsushima Warm Current; JSPW: Japan Sea Proper Water

    表  1  LV87-2-3孔岩心的AMS14C测年结果

    Tab.  1  The results of AMS14C dating from the sediment Core LV87-2-3

    样品编号 深度/cm 测年材料 种属 测量值/a BP δ13C/‰ 传统年龄/(a BP) 日历年龄/(cal a BP)
    置信区间/1σ 截距值
    672259 7~13 浮游有孔虫 Pachyderma; Bulloides 470 ± 30 −0.3 870 ± 30 334~475 405
    610375 201~202 浮游有孔虫 Pachyderma; Bulloides 9760 ± 30 −0.5 10160 ± 30 11119~11271 11203
    610376 261~262 浮游有孔虫 Pachyderma 15510 ± 50 −0.3 15910 ± 50 18342~18608 18472
    610377 301~302 浮游有孔虫 Pachyderma 17230 ± 60 +0.1 17640 ± 60 20357~20624 20494
    610378 351~352 浮游有孔虫 Pachyderma 20490 ± 70 +0.1 20900 ± 70 24043~24366 24209
    610379 461~462 浮游有孔虫 Pachyderma 27580 ± 120 +0.0 27990 ± 120 31117~31400 31272
    664989 541~542 浮游有孔虫 Pachyderma 34990 ± 310 −0.4 35370 ± 310 39316~39896 39624
    664990 621~622 浮游有孔虫 Pachyderma −0.7 > 43500
    下载: 导出CSV
  • [1] Chen Jun, Li Gaojun, Yang Jiedong, et al. Nd and Sr isotopic characteristics of Chinese deserts: implications for the provenances of Asian dust[J]. Geochimica et Cosmochimica Acta, 2007, 71(15): 3904−3914. doi: 10.1016/j.gca.2007.04.033
    [2] Minoura K, Akaki K, Nemoto N, et al. Origin of deep water in the Japan Sea over the last 145 kyr[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 339−341: 25−38. doi: 10.1016/j.palaeo.2012.04.011
    [3] Shen Xingyan, Wan Shiming, France-Lanord C, et al. History of Asian eolian input to the Sea of Japan since 15 Ma: links to Tibetan uplift or global cooling?[J]. Earth and Planetary Science Letters, 2017, 474: 296−308. doi: 10.1016/j.jpgl.2017.06.053
    [4] Tada R, Irino T, Koizumi I. Land-ocean linkages over orbital and millennial timescales recorded in Late Quaternary sediments of the Japan Sea[J]. Paleoceanography, 1999, 14(2): 236−247. doi: 10.1029/1998PA900016
    [5] 沈兴艳, 万世明. 日本海第四纪沉积记录及其海陆联系的研究进展[J]. 海洋地质与第四纪地质, 2015, 35(6): 139−151.

    Shen Xingyan, Wan Shiming. Research progress of Quaternary depositional records of the Japan Sea and its implications for the linkages to the asian continent[J]. Marine Geology & Quaternary Geology, 2015, 35(6): 139−151.
    [6] Wang Pinxian. Response of western Pacific marginal seas to glacial cycles: paleoceanographic and sedimentological features[J]. Marine Geology, 1999, 156(1/4): 5−39.
    [7] Bailey I, Liu Qingsong, Swann G E A, et al. Iron fertilisation and biogeochemical cycles in the sub-Arctic northwest Pacific during the late Pliocene intensification of northern hemisphere glaciation[J]. Earth and Planetary Science Letters, 2011, 307(3/4): 253−265.
    [8] 董智, 石学法, 葛晨东, 等. 日本海中部60 ka以来的风尘沉积对西风环流演化的指示[J]. 科学通报, 2017, 62(11): 1172−1184. doi: 10.1360/N972016-00861

    Dong Zhi, Shi Xuefa, Ge Chendong, et al. Evolution of westerly jet during the last 60 ka: evidence from core deposits in the central Japan (East) Sea[J]. Chinese Science Bulletin, 2017, 62(11): 1172−1184. doi: 10.1360/N972016-00861
    [9] Zhang Qiang, Liu Qingsong, Li Jinhua, et al. An integrated study of the eolian dust in pelagic sediments from the North Pacific Ocean based on environmental magnetism, transmission electron microscopy, and diffuse reflectance spectroscopy[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(5): 3358−3376. doi: 10.1002/2017JB014951
    [10] Itaki T, Ikehara K, Motoyama I, et al. Abrupt ventilation changes in the Japan Sea over the last 30 ky: evidence from deep-dwelling radiolarians[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 208(3/4): 263−278.
    [11] 豆汝席, 邹建军, 石学法, 等. 3万年以来日本海西部海冰活动变化[J]. 第四纪研究, 2020, 40(3): 690−703. doi: 10.11928/j.issn.1001-7410.2020.03.08

    Dou Ruxi, Zou Jianjun, Shi Xuefa, et al. Reconstructed changes in sea ice in the western Sea of Japan over the last 30000 years[J]. Quaternary Sciences, 2020, 40(3): 690−703. doi: 10.11928/j.issn.1001-7410.2020.03.08
    [12] Tada R. Onset and evolution of millennial-scale variability in the Asian Monsoon and its impact on paleoceanography of the Japan Sea[M]//Clift P, Kuhnt W, Wang P, et al. Continent-Ocean Interactions Within East Asian Marginal Sea. Washington, DC: American Geophysical Union, 2004, 149: 283−298.
    [13] Fujine K, Tada R, Yamamoto M. Paleotemperature response to monsoon activity in the Japan Sea during the last 160 kyr[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280(3/4): 350−360.
    [14] Lee K E, Bahk J J, Choi J. Alkenone temperature estimates for the East Sea during the last 190, 000 years[J]. Organic Geochemistry, 2008, 39(6): 741−753. doi: 10.1016/j.orggeochem.2008.02.003
    [15] Ikehara K, Fujine K. Fluctuations in the late Quaternary East Asian winter monsoon recorded in sediment records of surface water cooling in the northern Japan Sea[J]. Journal of Quaternary Science, 2012, 27(9): 866−872. doi: 10.1002/jqs.2573
    [16] Zou Jianjun, Shi Xuefa, Liu Yanguang, et al. Reconstruction of environmental changes using a multi-proxy approach in the Ulleung Basin (Sea of Japan) over the last 48 ka[J]. Journal of Quaternary Science, 2012, 27(9): 891−900. doi: 10.1002/jqs.2578
    [17] Tada R, Irino T, Ikehara K, et al. High-resolution and high-precision correlation of dark and light layers in the Quaternary hemipelagic sediments of the Japan Sea recovered during IODP Expedition 346[J]. Progress in Earth and Planetary Science, 2018, 5: 19. doi: 10.1186/s40645-018-0167-8
    [18] Wu Yonghua, Shi Xuefa, Gong Xun, et al. Evolution of the upper ocean stratification in the Japan Sea since the last glacial[J]. Geophysical Research Letters, 2020, 47(16): e2020GL088255. doi: 10.1029/2020GL088255
    [19] Yamazaki T, Abdeldayem A L, Ikehara K. Rock-magnetic changes with reduction diagenesis in Japan Sea sediments and preservation of geomagnetic secular variation in inclination during the last 30, 000 years[J]. Earth, Planets and Space, 2003, 55(6): 327−340.
    [20] Verosub K L, Roberts A P. Environmental magnetism: past, present, and future[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B2): 2175−2192. doi: 10.1029/94JB02713
    [21] 胡守云, 邓成龙, Appel E, 等. 湖泊沉积物磁学性质的环境意义[J]. 科学通报, 2001, 46(17): 1491−1494.

    Hu Shouyun, Deng Chenglong, Appel E, et al. Environmental magnetic studies of lacustrine sediments[J]. Chinese Science Bulletin, 2002, 47(7): 1491−1494.
    [22] 邓成龙, 刘青松, 潘永信, 等. 中国黄土环境磁学[J]. 第四纪研究, 2007, 27(2): 193−209. doi: 10.3321/j.issn:1001-7410.2007.02.005

    Deng Chenglong, Liu Qingsong, Pan Yongxin, et al. Environmental magnetism of Chinese loess-paleosol sequences[J]. Quaternary Sciences, 2007, 27(2): 193−209. doi: 10.3321/j.issn:1001-7410.2007.02.005
    [23] Liu Qingsong, Roberts A P, Larrasoaña J C, et al. Environmental magnetism: principles and applications[J]. Reviews of Geophysics, 2012, 50(4): RG4002.
    [24] Zheng Y, Kissel C, Zheng H B, et al. Sedimentation on the inner shelf of the East China Sea: magnetic properties, diagenesis and paleoclimate implications[J]. Marine Geology, 2010, 268(1/4): 34−42.
    [25] Liu Jianxing, Liu Qingsong, Zhang Xunhua, et al. Magnetostratigraphy of a long Quaternary sediment core in the South Yellow Sea[J]. Quaternary Science Reviews, 2016, 144: 1−15. doi: 10.1016/j.quascirev.2016.05.025
    [26] Qin Huafeng, Zhao Xiang, Liu Shuangchi, et al. An ultra-low magnetic field thermal demagnetizer for high-precision paleomagnetism[J]. Earth, Planets and Space, 2020, 72(1): 170. doi: 10.1186/s40623-020-01304-0
    [27] Bowles M W, Mogollón J M, Kasten S, et al. Global rates of marine sulfate reduction and implications for sub-sea-floor metabolic activities[J]. Science, 2014, 344(6186): 889−891. doi: 10.1126/science.1249213
    [28] Rickard D. How long does it take a pyrite framboid to form?[J]. Earth and Planetary Science Letters, 2019, 513: 64−68. doi: 10.1016/j.jpgl.2019.02.019
    [29] Chang Liao, Roberts A P, Winklhofer M, et al. Magnetic detection and characterization of biogenic magnetic minerals: acomparison of ferromagnetic resonance and first-order reversal curve diagrams[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(8): 6136−6158. doi: 10.1002/2014JB011213
    [30] Liu Jianxing, Shi Xuefa, Liu Qingsong, et al. Authigenic iron sulfides indicate sea-level change on the continental shelf: an illustration from the East China Sea[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(3): e2020JB021222. doi: 10.1029/2020JB021222
    [31] Yu Xiaoxiao, Mei Xi, Liu Jiarui, et al. Multiple sulfur isotopes of iron sulfides from thick greigite-bearing sediments indicate anaerobic oxidation and possible leakages of coastal methane[J]. Geophysical Research Letters, 2023, 50(16): e2023GL103303. doi: 10.1029/2023GL103303
    [32] Tada R. Paleoceanographic evolution of the Japan Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 108(3/4): 487−508.
    [33] Oba T, Irino T. Sea level at the last glacial maximum, constrained by oxygen isotopic curves of planktonic foraminifera in the Japan Sea[J]. Journal of Quaternary Science, 2012, 27(9): 941−947. doi: 10.1002/jqs.2585
    [34] 邹建军, 宗娴, 朱爱美, 等. 37 ka以来日本海沉积物有机质碳和氮稳定同位素变化及其古海洋学意义[J]. 地学前缘, 2022, 29(4): 123−135.

    Zou Jianjun, Zong Xian, Zhu Aimei, et al. Stable carbon and nitrogen isotope variations in sedimentary organic matter in the Sea of Japan since 37 ka: paleoceanographic implications[J]. Earth Science Frontiers, 2022, 29(4): 123−135.
    [35] Takei T, Minoura K, Tsukawaki S, et al. Intrusion of a branch of the Oyashio Current into the Japan Sea during the Holocene[J]. Paleoceanography, 2002, 17(3): 11-1−11-10.
    [36] Domitsu H, Oda M. Linkages between surface and deep circulations in the southern Japan Sea during the last 27, 000 years: evidence from planktic foraminiferal assemblages and stable isotope records[J]. Marine Micropaleontology, 2006, 61(4): 155−170. doi: 10.1016/j.marmicro.2006.06.006
    [37] Kido Y, Minami I, Tada R, et al. Orbital-scale stratigraphy and high-resolution analysis of biogenic components and deep-water oxygenation conditions in the Japan Sea during the last 640 kyr[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 247(1/2): 32−49.
    [38] Nagashima K, Tada R, Tani A, et al. Contribution of aeolian dust in Japan Sea sediments estimated from ESR signal intensity and crystallinity of quartz[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(2): Q02Q04.
    [39] Peterson L C, Haug G H, Hughen K A, et al. Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial[J]. Science, 2000, 290(5498): 1947−1951. doi: 10.1126/science.290.5498.1947
    [40] Voelker A H L. Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database[J]. Quaternary Science Reviews, 2002, 21(10): 1185−1212. doi: 10.1016/S0277-3791(01)00139-1
    [41] Sun Youbin, Clemens S C, Morrill C, et al. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon[J]. Nature Geoscience, 2012, 5(1): 46−49. doi: 10.1038/ngeo1326
    [42] Xu Zhiwei, Lu Huayu, Yi Shuangwen, et al. Climate-driven changes to dune activity during the Last Glacial Maximum and deglaciation in the Mu Us dune field, north-central China[J]. Earth and Planetary Science Letters, 2015, 427: 149−159. doi: 10.1016/j.jpgl.2015.07.002
    [43] Shi Zhengguo, Liu Xiaodong. Distinguishing the provenance of fine-grained eolian dust over the Chinese Loess Plateau from a modelling perspective[J]. Tellus B: Chemical and Physical Meteorology, 2011, 63(5): 959−970. doi: 10.1111/j.1600-0889.2011.00561.x
    [44] Xie Yuanyun, Chi Yunping. Geochemical investigation of dry- and wet-deposited dust during the same dust-storm event in Harbin, China: constraint on provenance and implications for formation of aeolian loess[J]. Journal of Asian Earth Sciences, 2016, 120: 43−61. doi: 10.1016/j.jseaes.2016.01.025
    [45] Ikehara K, Itaki T. Millennial-scale fluctuations in seasonal sea-ice and deep-water formation in the Japan Sea during the late Quaternary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 247(1/2): 131−143.
    [46] Heaton T J, Köhler P, Butzin M, et al. Marine20—The marine radiocarbon age calibration curve (0−55,000 cal BP)[J]. Radiocarbon, 2020, 62(4): 779−820. doi: 10.1017/RDC.2020.68
    [47] Kuzmin Y V, Burr G S, Gorbunov S V, et al. A tale of two seas: reservoir age correction values (R, ΔR) for the Sakhalin Island (Sea of Japan and Okhotsk Sea)[J]. Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007, 259(1): 460−462.
    [48] Bloemendal J, King J W, Hall F R, et al. Rock magnetism of Late Neogene and Pleistocene deep-sea sediments: relationship to sediment source, diagenetic processes, and sediment lithology[J]. Journal of Geophysical Research: Solid Earth, 1992, 97(B4): 4361−4375. doi: 10.1029/91JB03068
    [49] Harrison R J, Feinberg J M. FORCinel: an improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(5): Q05016.
    [50] Pike C, Fernandez A. An investigation of magnetic reversal in submicron-scale Co dots using first order reversal curve diagrams[J]. Journal of Applied Physics, 1999, 85(9): 6668−6676. doi: 10.1063/1.370177
    [51] Heslop D, Dekkers M J, Kruiver P P, et al. Analysis of isothermal remanent magnetization acquisition curves using the expectation-maximization algorithm[J]. Geophysical Journal International, 2002, 148(1): 58−64. doi: 10.1046/j.0956-540x.2001.01558.x
    [52] Pigati J S, Quade J, Wilson J, et al. Development of low-background vacuum extraction and graphitization systems for 14C dating of old (40−60ka) samples[J]. Quaternary International, 2007, 166(1): 4−14. doi: 10.1016/j.quaint.2006.12.006
    [53] 刘健, 张欣, 丁璇, 等. 江苏南通近岸区晚第四纪沉积序列的沉积相特征与定年[J]. 海洋地质与第四纪地质, 2023, 43(3): 35−48.

    Liu Jian, Zhang Xin, Ding Xuan, et al. Sedimentary facies characteristics and dating of the late Quaternary sedimentary sequence in the nearshore coastal area of Nantong, Jiangsu Province, China[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 35−48.
    [54] Rowan C J, Roberts A P, Broadbent T. Reductive diagenesis, magnetite dissolution, greigite growth and paleomagnetic smoothing in marine sediments: anew view[J]. Earth and Planetary Science Letters, 2009, 277(1/2): 223−235.
    [55] 常华进, 储雪蕾, 冯连君, 等. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评, 2009, 55(1): 91−99. doi: 10.3321/j.issn:0371-5736.2009.01.011

    Chang Huajin, Chu Xuelei, Feng Lianjun, et al. Redox sensitive trace elements as paleoenvironments proxies[J]. Geological Review, 2009, 55(1): 91−99. doi: 10.3321/j.issn:0371-5736.2009.01.011
    [56] 吕荐阔, 翟世奎, 于增慧, 等. 氧化还原敏感性元素在沉积环境判别中的应用研究进展[J]. 海洋科学, 2021, 45(12): 108−124.

    Lü Jiankuo, Zhai Shikui, Yu Zenghui, et al. Application and influence factors of redox-sensitive elements in a sedimentary environment[J]. Marine Sciences, 2021, 45(12): 108−124.
    [57] Roberts A P, Heslop D, Zhao Xiang, et al. Understanding fine magnetic particle systems through use of first-order reversal curve diagrams[J]. Reviews of Geophysics, 2014, 52(4): 557−602. doi: 10.1002/2014RG000462
    [58] 秦华峰, 刘青松, 潘永信. 一阶反转曲线(FORC)图的原理及应用实例[J]. 地球物理学报, 2008, 51(3): 743−751. doi: 10.3321/j.issn:0001-5733.2008.03.015

    Qin Huafeng, Liu Qingsong, Pan Yongxin. The first-order reversal curve (FORC) diagram: theory and case study[J]. ChineseJournal of Geophysics, 2008, 51(3): 743−751. doi: 10.3321/j.issn:0001-5733.2008.03.015
    [59] Liu Jian, Zhu Rixiang, Roberts A P, et al. High-resolution analysis of early diagenetic effects on magnetic minerals in post-middle-Holocene continental shelf sediments from the Korea Strait[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B3): B03103.
    [60] Verwey E J W. Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures[J]. Nature, 1939, 144(3642): 327−328.
    [61] Chang Liao, Heslop D, Roberts A P, et al. Discrimination of biogenic and detrital magnetite through a double Verwey transition temperature[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(1): 3−14. doi: 10.1002/2015JB012485
    [62] Yamazaki T, Suzuki Y, Kouduka M, et al. Dependence of bacterial magnetosome morphology on chemical conditions in deep-sea sediments[J]. Earth and Planetary Science Letters, 2019, 513: 135−143. doi: 10.1016/j.jpgl.2019.02.015
    [63] Irino T, Tada R. Quantification of aeolian dust (Kosa) contribution to the Japan Sea sediments and its variation during the last 200 ky[J]. Geochemical Journal, 2000, 34(1): 59−93. doi: 10.2343/geochemj.34.59
    [64] Heinrich H. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130, 000 years[J]. Quaternary Research, 1988, 29(2): 142−152. doi: 10.1016/0033-5894(88)90057-9
    [65] Rasmussen T L, van Weering T C E, Labeyrie L. High resolution stratigraphy of the Faeroe-Shetland Channel and its relation to north Atlantic paleoceanography: The last 87 kyr[J]. Marine Geology, 1996, 131(1/2): 75−88.
    [66] 刘景昱, 方念乔. 海因里希事件与类海因里希事件[J]. 地球科学进展, 2019, 34(6): 618−628. doi: 10.11867/j.issn.1001-8166.2019.06.0618

    Liu Jingyu, Fang Nianqiao. Heinrich events and Heinrich (-like) events[J]. Advances in Earth Science, 2019, 34(6): 618−628. doi: 10.11867/j.issn.1001-8166.2019.06.0618
    [67] Bond G, Showers W, Cheseby M, et al. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates[J]. Science, 1997, 278(5341): 1257−1266. doi: 10.1126/science.278.5341.1257
    [68] Rohling E J, Mayewski P A, Challenor P. On the timing and mechanism of millennial-scale climate variability during the last glacial cycle[J]. Climate Dynamics, 2003, 20(2/3): 257−267.
    [69] Stuiver M, Grootes P M. GISP2 oxygen isotope ratios[J]. Quaternary Research, 2000, 53(3): 277−284. doi: 10.1006/qres.2000.2127
    [70] Spratt R M, Lisiecki L E. A Late Pleistocene sea level stack[J]. Climate of the Past, 2016, 12(4): 1079−1092. doi: 10.5194/cp-12-1079-2016
    [71] Cheng Hai, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640,000 years and ice age terminations[J]. Nature, 2016, 534(7609): 640−646. doi: 10.1038/nature18591
    [72] Cacho I, Grimalt J O, Sierro F J, et al. Evidence for enhanced Mediterranean thermohaline circulation during rapid climatic coolings[J]. Earth and Planetary Science Letters, 2000, 183(3/4): 417−429.
    [73] Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5550): 2345−2348. doi: 10.1126/science.1064618
    [74] Nagashima K, Tada R, Tani A, et al. Millennial-scale oscillations of the westerly jet path during the last glacial period[J]. Journal of Asian Earth Sciences, 2011, 40(6): 1214−1220. doi: 10.1016/j.jseaes.2010.08.010
    [75] Schoonen M A A, Barnes H L. Reactions forming pyrite and marcasite from solution: II. Via FeS precursors below 100℃[J]. Geochimica et Cosmochimica Acta, 1991, 55(6): 1505−1514. doi: 10.1016/0016-7037(91)90123-M
    [76] Roberts A P. Magnetic mineral diagenesis[J]. Earth-Science Reviews, 2015, 151: 1−47. doi: 10.1016/j.earscirev.2015.09.010
    [77] Berner R A. Sedimentary pyrite formation: an update[J]. Geochimica et Cosmochimica Acta, 1984, 48(4): 605−615. doi: 10.1016/0016-7037(84)90089-9
    [78] Tanaka K. Formation of bottom water and its variability in the northwestern part of the Sea of Japan[J]. Journal of Geophysical Research: Oceans, 2014, 119(3): 2081−2094. doi: 10.1002/2013JC009456
    [79] 石学法, 邹建军, 姚政权, 等. 日本海末次冰期以来沉积作用和环境演化及其控制要素[J]. 海洋地质与第四纪地质, 2019, 39(3): 1−11.

    Shi Xuefa, Zou Jianjun, Yao Zhengquan, et al. Sedimentation and environment evolution of the Sea of Japan since the Last Glaciation and its driving forces[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 1−11.
    [80] 刘喜停, 李安春, 马志鑫, 等. 沉积过程对自生黄铁矿硫同位素的约束[J]. 沉积学报, 2020, 38(1): 124−137.

    Liu Xiting, Li Anchun, Ma Zhixin, et al. Constraint of sedimentary processes on the sulfur isotope of authigenic pyrite[J]. Acta Sedimentologica Sinica, 2020, 38(1): 124−137.
    [81] Chiang J C H, Fung I Y, Wu Chihua, et al. Role of seasonal transitions and westerly jets in East Asian paleoclimate[J]. Quaternary Science Reviews, 2015, 108: 111−129. doi: 10.1016/j.quascirev.2014.11.009
    [82] Wang Yi, Hendy I L, Latimer J C, et al. Diagenesis and iron paleo-redox proxies: new perspectives from magnetic and iron speciation analyses in the Santa Barbara Basin[J]. Chemical Geology, 2019, 519: 95−109. doi: 10.1016/j.chemgeo.2019.04.018
    [83] Ono Y, Naruse T. Snowline elevation and eolian dust flux in the Japanese islands during isotope stages 2 and 4[J]. Quaternary International, 1997, 37: 45−54. doi: 10.1016/1040-6182(96)00003-1
    [84] Irino T, Tada R. High-resolution reconstruction of variation in aeolian dust (Kosa) deposition at ODP site 797, the Japan Sea, during the last 200 ka[J]. Global and Planetary Change, 2003, 35(1/2): 143−156.
    [85] Zhang Hongbin, Griffiths M L, Chiang J C H, et al. East Asian hydroclimate modulated by the position of the westerlies during Termination I[J]. Science, 2018, 362(6414): 580−583. doi: 10.1126/science.aat9393
    [86] Kubota Y, Kimoto K, Tada R, et al. Millennial-scale variability of East Asian summer monsoon inferred from sea surface salinity in the northern East China Sea (ECS) and its impact on the Japan Sea during Marine Isotope Stage (MIS) 3[J]. Progress in Earth and Planetary Science, 2019, 6: 39. doi: 10.1186/s40645-019-0283-0
    [87] Zhu Zeyang, Wu Jing, Chu Guoqiang, et al. Summer warming during Heinrich Stadial 1 in Northeast China[J]. Geology, 2024, 52(6): 385–389.
    [88] Shi X F, Wu Y H, Zou J J, et al. Multiproxy reconstruction for Kuroshio responses to northern hemispheric oceanic climate and the Asian Monsoon since Marine Isotope Stage 5.1 (~ 88 ka)[J]. Climate of the Past, 2014, 10(5): 1735−1750. doi: 10.5194/cp-10-1735-2014
    [89] Deser C, Phillips A, Bourdette V, et al. Uncertainty in climate change projections: the role of internal variability[J]. Climate Dynamics, 2012, 38(3/4): 527−546.
    [90] Ueda H, Kamae Y, Hayasaki M, et al. Combined effects of recent Pacific cooling and Indian Ocean warming on the Asian monsoon[J]. Nature Communications, 2015, 6: 8854. doi: 10.1038/ncomms9854
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  158
  • HTML全文浏览量:  78
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-15
  • 修回日期:  2024-03-07
  • 网络出版日期:  2024-05-20
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回