留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ENSO事件下西北太平洋远东拟沙丁鱼和日本鲭栖息地协同变化特征

刘思源 张衡 杨超 方舟

刘思源,张衡,杨超,等. ENSO事件下西北太平洋远东拟沙丁鱼和日本鲭栖息地协同变化特征[J]. 海洋学报,2024,46(1):39–52 doi: 10.12284/hyxb2024018
引用本文: 刘思源,张衡,杨超,等. ENSO事件下西北太平洋远东拟沙丁鱼和日本鲭栖息地协同变化特征[J]. 海洋学报,2024,46(1):39–52 doi: 10.12284/hyxb2024018
Liu Siyuan,Zhang Heng,Yang Chao, et al. Exhibit covariation characteristics in the habitat changes of Sardinops melanostictus and Scomber japonicus in the northwestern Pacific Ocean under ENSO event[J]. Haiyang Xuebao,2024, 46(1):39–52 doi: 10.12284/hyxb2024018
Citation: Liu Siyuan,Zhang Heng,Yang Chao, et al. Exhibit covariation characteristics in the habitat changes of Sardinops melanostictus and Scomber japonicus in the northwestern Pacific Ocean under ENSO event[J]. Haiyang Xuebao,2024, 46(1):39–52 doi: 10.12284/hyxb2024018

ENSO事件下西北太平洋远东拟沙丁鱼和日本鲭栖息地协同变化特征

doi: 10.12284/hyxb2024018
基金项目: 国家自然科学基金青年项目(42306117);上海市自然科学基金项目(18ZR1449800);农业部外海渔业开发重点实验室开放课题项目(LOF 2021-01)。
详细信息
    作者简介:

    刘思源(2000—),男,河南省周口市人,主要从事渔业海洋学研究。E-mail:1419025398@qq.com

    通讯作者:

    方舟(1988—),男,副教授,研究方向为远洋渔业资源。E-mail: zfang@shou.edu.cn

  • 中图分类号: P722;P714+.5;S931

Exhibit covariation characteristics in the habitat changes of Sardinops melanostictus and Scomber japonicus in the northwestern Pacific Ocean under ENSO event

  • 摘要: 远东拟沙丁鱼(Sardinops melanostictus)和日本鲭(Scomber japonicus)是西北太平洋海域重要的关联经济物种,探究二者栖息地变动的关联性有利于合理开发和管理渔业资源。本研究利用2017−2021年6−11月西北太平洋海域远东拟沙丁鱼和日本鲭的渔业数据,结合海表面温度、海表面高度和叶绿素a质量浓度3个关键环境变量分别构建不同权重的栖息地模型,并利用2021年的渔业数据进行验证。选取最优模型预测不同厄尔尼诺与南方涛动(El Niño-Southern Oscillation, ENSO)事件下远东拟沙丁鱼和日本鲭的最适栖息地分布,分析二者在不同ENSO事件下最适栖息地时空分布的差异性和同步性。结果表明:在不同ENSO事件下远东拟沙丁鱼适宜生境面积(高于15%)均高于日本鲭适宜生境面积(低于6%);但远东拟沙丁鱼在拉尼娜事件下最适栖息地面积增长率高于厄尔尼诺事件,前者增长率为0.197,后者增长率为0.123,相反,日本鲭在拉尼娜事件下增长率低于厄尔尼诺事件,前者增长率为1.114,后者增长率为2.082;当远东拟沙丁鱼和日本鲭的分布位置接近时,会促进二者栖息地的适宜条件,当二者分布位置相距较远时会一定程度上抑制日本鲭栖息地面积的增加。远东拟沙丁鱼和日本鲭适宜面积在不同ENSO事件下协同变化特征可能与二者种间关系(竞争/捕食−被捕食)和西北太平洋海域海流分布情况有关。
  • 图  1  各月环境变量拟合的远东拟沙丁鱼和日本鲭适宜性指数(SI)曲线

    Fig.  1  Suitability index(SI)curve of each environmental variables for Sardinops melanostictus and Scomber japonicus in different months

    图  2  2021年6−11月远东拟沙丁鱼(a)和日本鲭(b)捕捞努力量与栖息地适宜性指数(HSI)叠加分布

    Fig.  2  The habitat suitability index (HSI) overlain with fishing efforts of Sardinops melanostictus (a) and Scomber japonicus (b) from June to November in 2021

    图  3  不同ENSO事件下海表面温度、海表面高度、叶绿素a质量浓度时空分布

    Fig.  3  Temporal and spatial distribution of sea surface temperature, sea surface height, and chlorophyll a mass concentration under different ENSO events

    图  4  厄尔尼诺(2018年)和拉尼娜(2021年)事件下远东拟沙丁鱼(a)和日本鲭(b)6−11月适宜栖息地(HSI ≥ 0.6)时空分布

    Fig.  4  Temporal and spatial distributions habitat (HSI ≥ 0.6) of Sardinops melanostictus (a) and Scomber japonicus (b) in El Niño event (2018) and La Niña event (2021) from June to November

    图  5  厄尔尼诺(2018年)和拉尼娜(2021年)事件下远东拟沙丁鱼和日本鲭最适栖息地重心

    Fig.  5  Optimal habitat center of gravity of Sardinops melanostictus and Scomber japonicus in El Niño event (2018) and La Niña event (2021)

    图  6  厄尔尼诺(2018年)和拉尼娜(2021年)事件下6−11月远东拟沙丁鱼和日本鲭适宜栖息地(HSI ≥ 0.6)面积占比

    Fig.  6  The proportion of suitable habitat area (HSI ≥ 0.6) of Sardinops melanostictus and Scomber japonicus in EI Niño event (2018) and La Niña event (2021) from June to November

    图  7  不同ENSO气候事件下6−11月远东拟沙丁鱼和日本鲭最适栖息地中海表面温度、海表面高度、叶绿素a质量浓度均值

    Fig.  7  Average values of sea surface temperature, sea surface height and chlorophyll a mass concentration in the optimal habitats of Sardinops melanostictus and Scomber japonicus from June to November under different ENSO climate events

    表  1  渔业数据中建模和验证样本量

    Tab.  1  Model and validate sample sizes in fishery data

    物种 年份 样本量
    6月 7月 8月 9月 10月 11月
    远东拟沙丁鱼 2017 1 520 1 679 1 518 1 374 1 183 1 083
    日本鲭 2017 1 616 1 686 1 538 1 311 1 095 1 078
    远东拟沙丁鱼 2018 573 916 431 409 345 279
    日本鲭 2018 1 681 1 653 1 068 1 047 721 471
    远东拟沙丁鱼 2019 470 460 437 417 285 288
    日本鲭 2019 510 543 518 439 339 298
    远东拟沙丁鱼 2020 806 943 870 619 574 571
    日本鲭 2020 636 773 643 534 731 647
    远东拟沙丁鱼 2021 1 668 2 247 1 921 1 924 1 596 1 108
    日本鲭 2021 886 810 316 374 633 497
      注:“样本量”为2017−2021年各月作业天数的总和;2017−2020年的数据为建模数据,2021年的数据为验证数据。
    下载: 导出CSV

    表  2  不同关键环境变量的不同权重方案

    Tab.  2  Different scenarios for the weights of the key environment variables

    不同权重方案海表面温度海表面高度叶绿素a质量浓度
    方案一010
    方案二001
    方案三0.10.80.1
    方案四0.10.10.8
    方案五0.250.50.25
    方案六0.250.250.5
    方案七0.50.250.25
    方案八0.3330.3330.333
    方案九0.80.10.1
    方案十100
    下载: 导出CSV

    表  3  远东拟沙丁鱼和日本鲭SI模型拟合公式

    Tab.  3  Fitting formula of SI models for Sardinops melanostictus and Scomber japonicus

    月份 物种 SI 模型 R2 p
    6月 远东拟沙丁鱼 SISST = exp[− 0.064 ×(XSST − 11.584)2] 0.795 <0.05
    SIChl a = exp[− 33.686 ×(XChl a − 0.64)2] 0.966 <0.01
    SISSH = exp[− 40.087 ×(XSSH − 0.237)2] 0.972 <0.01
    日本鲭 SISST = exp[− 0.087 ×(XSST − 12.2)2] 0.795 <0.05
    SIChl a = exp[− 141.335 ×(XChl a − 0.17)2] 0.902 <0.01
    SISSH = exp[− 81.949 ×(XSSH − 0.228)2] 0.911 <0.01
    7月 远东拟沙丁鱼 SISST = exp[− 0.069 ×(XSST − 16.429)2] 0.966 <0.01
    SIChl a = exp[− 11.607 ×(XChl a − 0.267)2] 0.938 <0.01
    SISSH = exp[− 54.679 ×(XSSH − 0.286)2] 0.976 <0.01
    日本鲭 SISST = exp[− 0.069 ×(XSST − 15.658)2] 0.906 <0.01
    SIChl a = exp[− 84.642 ×(XChl a − 0.195)2] 0.883 <0.05
    SISSH = exp[− 66.081 ×(XSSH − 0.3)2] 0.961 <0.01
    8月 远东拟沙丁鱼 SISST = exp[− 0.052 ×(XSST − 18.194)2] 0.987 <0.01
    SIChl a = exp[− 204.505 ×(XChl a − 0.113)2] 0.890 <0.01
    SISSH = exp[− 34.281 ×(XSSH − 0.303)2] 0.958 <0.01
    日本鲭 SISST = exp[− 0.053 ×(XSST − 18.195)2] 0.957 <0.01
    SIChl a = exp[− 51.625 ×(XChl a − 0.233)2] 0.926 <0.01
    SISSH = exp[− 48.229 ×(XSSH − 0.297)2] 0.981 <0.01
    9月 远东拟沙丁鱼 SISST = exp[− 0.053 ×(XSST − 15.85)2] 0.775 <0.05
    SIChl a = exp[− 16.853 ×(XChl a − 0.096)2] 0.949 <0.01
    SISSH = exp[− 87.937 ×(XSSH − 0.293)2] 0.918 <0.01
    日本鲭 SISST = exp[− 0.027 ×(XSST − 17.05)2] 0.880 <0.01
    SIChl a = exp[− 44.535 ×(XChl a − 0.294)2] 0.961 <0.01
    SISSH = exp[− 30.036 ×(XSSH − 0.301)2] 0.919 <0.01
    10月 远东拟沙丁鱼 SISST = exp[− 0.121 ×(XSST − 13.352)2] 0.875 <0.05
    SIChl a = exp[− 83.825 ×(XChl a − 0.271)2] 0.981 <0.01
    SISSH = exp[− 59.476 ×(XSSH − 0.318)2] 0.922 <0.01
    日本鲭 SISST = exp[− 0.115 ×(XSST − 12.985)2] 0.944 <0.01
    SIChl a = exp[− 45.493 ×(XChl a − 0.277)2] 0.833 <0.01
    SISSH = exp[− 67.404 ×(XSSH − 0.313)2] 0.965 <0.01
    11月 远东拟沙丁鱼 SISST = exp[− 0.158 ×(XSST − 10.131)2] 0.709 <0.05
    SIChl a = exp[− 180.099 ×(XChl a − 0.392)2] 0.983 <0.01
    SISSH = exp[− 65.196 ×(XSSH − 0.317)2] 0.857 <0.05
    日本鲭 SISST = exp[− 0.136 ×(XSST − 10.817)2] 0.735 <0.01
    SIChl a = exp[− 135.492 ×(XChl a − 0.19)2] 0.852 <0.01
    SISSH = exp[− 54.85 ×(XSSH − 0.326)2] 0.878 <0.05
    下载: 导出CSV

    表  4  厄尔尼诺(2018年)和拉尼娜(2021年)事件下6−11月远东拟沙丁鱼和日本鲭各月适宜栖息地(HSI≥0.6)面积增长率

    Tab.  4  The growth rate of suitable habitat area (HSI ≥ 0.6) of Sardinops melanostictus and Scomber japonicus in El Niño event (2018) and La Niña event (2021) from June to November

    物种 气候事件 7月 8月 9月 10月 11月 均值
    远东拟沙丁鱼 El Niño 0.170 0.257 0.205 −0.004 −0.012 0.123
    La Niña 0.984 0.210 0.080 −0.357 0.067 0.197
    日本鲭 El Niño 9.041 0.291 1.240 −0.470 0.309 2.082
    La Niña 0.485 0.052 2.826 −0.830 3.038 1.114
    下载: 导出CSV
  • [1] Klyashtorin L B. Long-term climate change and main commercial fish production in the Atlantic and Pacific[J]. Fisheries Research, 1998, 37(1/3): 115−125.
    [2] Lecomte F, Grant W S, Dodson J J, et al. Living with uncertainty: genetic imprints of climate shifts in East Pacific anchovy ( Engraulis mordax) and sardine ( Sardinops sagax)[J]. Molecular Ecology, 2004, 13(8): 2169−2182. doi: 10.1111/j.1365-294X.2004.02229.x
    [3] 刘思源, 张衡, 杨超, 等. 西北太平洋远东拟沙丁鱼与日本鲭种群动态特征及其与环境因子关系研究进展[J]. 大连海洋大学学报, 2023, 38(2): 357−368.

    Liu Siyuan, Zhang Heng, Yang Chao, et al. Relationship between stock dynamics and environmental variability for Japanese sardine ( Sardinops sagax) and chub mackerel ( Scomber japonicus) in the Northwest Pacific Ocean: a review[J]. Journal of Dalian Ocean University, 2023, 38(2): 357−368.
    [4] Hiyama Y, Yoda M, Ohshimo S. Stock size fluctuations in chub mackerel ( Scomber japonicus) in the East China Sea and the Japan/East Sea[J]. Fisheries Oceanography, 2002, 11(6): 347−353. doi: 10.1046/j.1365-2419.2002.00217.x
    [5] Contreras-Reyes J E, Canales T M, Rojas P M. Influence of climate variability on anchovy reproductive timing off northern Chile[J]. Journal of Marine Systems, 2016, 164: 67−75. doi: 10.1016/j.jmarsys.2016.08.006
    [6] 冯志萍, 张艳婧, 余为, 等. 智利外海智利竹筴鱼与茎柔鱼栖息地变动对ENSO事件响应的差异[J]. 中国水产科学, 2021, 28(9): 1195−1207.

    Feng Zhiping, Zhang Yanjing, Yu Wei, et al. Differences in habitat pattern response to various ENSO events in Trachurus murphyi and Dosidicus gigas located outside the exclusive economic zones of Chile[J]. Journal of Fishery Sciences of China, 2021, 28(9): 1195−1207.
    [7] Yatsu A, Kawabata A. Reconsidering Trans-Pacific “synchrony” in population fluctuations of sardines[J]. Bulletin of the Japanese Society of Fisheries Oceanography, 2017, 81(4): 271−283.
    [8] Bai Xuan, Gao Li, Choi S. Exploring the response of the Japanese sardine ( Sardinops melanostictus) stock-recruitment relationship to environmental changes under different structural models[J]. Fishes, 2022, 7(5): 276. doi: 10.3390/fishes7050276
    [9] Petatán-Ramírez D, Ojeda-Ruiz M Á, Sánchez-Velasco L, et al. Potential changes in the distribution of suitable habitat for Pacific sardine ( Sardinops sagax) under climate change scenarios[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2019, 169−170: 104632. doi: 10.1016/j.dsr2.2019.07.020
    [10] Liu Shuhao, Tian Yongjun, Liu Yang, et al. Development of a prey-predator species distribution model for a large piscivorous fish: a case study for Japanese Spanish mackerel Scomberomorus niphonius and Japanese anchovy Engraulis japonicus[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2023, 207: 105227. doi: 10.1016/j.dsr2.2022.105227
    [11] 刘思源, 张衡, 杨超, 等. 基于最大熵模型的西北太平洋远东拟沙丁鱼和日本鲭栖息地差异[J]. 上海海洋大学学报, 2023, 32(4): 806−817.

    Liu Siyuan, Zhang Heng, Yang Chao, et al. Differences in habitat distribution of Sardinops melanostictus and Scomber japonicus in the Northwest Pacific based on a maximum entropy model[J]. Journal of Shanghai Ocean University, 2023, 32(4): 806−817.
    [12] Vadas R L Jr, Orth D J. Formulation of habitat suitability models for stream fish guilds: do the standard methods work?[J]. Transactions of the American Fisheries Society, 2001, 130(2): 217−235. doi: 10.1577/1548-8659(2001)130<0217:FOHSMF>2.0.CO;2
    [13] Bordalo-Machado P. Fishing effort analysis and its potential to evaluate stock size[J]. Reviews in Fisheries Science, 2006, 14(4): 369−393. doi: 10.1080/10641260600893766
    [14] Li Gang, Chen Xinjun, Lei Lin, et al. Distribution of hotspots of chub mackerel based on remote-sensing data in coastal waters of China[J]. International Journal of Remote Sensing, 2014, 35(11/12): 4399−4421.
    [15] Van Der Lee G E M, Van Der Molen D T, Van Den Boogaard H F P, et al. Uncertainty analysis of a spatial habitat suitability model and implications for ecological management of water bodies[J]. Landscape Ecology, 2006, 21(7): 1019−1032. doi: 10.1007/s10980-006-6587-7
    [16] Chang Y J, Sun Chilu, Chen Yong, et al. Habitat suitability analysis and identification of potential fishing grounds for swordfish, Xiphias gladius, in the South Atlantic Ocean[J]. International Journal of Remote Sensing, 2012, 33(23): 7523−7541. doi: 10.1080/01431161.2012.685980
    [17] Xue Ying, Guan Lisha, Tanaka K, et al. Evaluating effects of rescaling and weighting data on habitat suitability modeling[J]. Fisheries Research, 2017, 188: 84−94. doi: 10.1016/j.fishres.2016.12.001
    [18] Yu Wei, Guo Ai, Zhang Yang, et al. Climate-induced habitat suitability variations of chub mackerel Scomber japonicus in the East China Sea[J]. Fisheries Research, 2018, 207: 63−73. doi: 10.1016/j.fishres.2018.06.007
    [19] 戴澍蔚, 唐峰华, 樊伟, 等. 北太平洋公海日本鲭资源分布及其渔场环境特征[J]. 海洋渔业, 2017, 39(4): 372−382.

    Dai Shuwei, Tang Fenghua, Fan Wei, et al. Distribution of resource and environment characteristics of fishing ground of Scomber japonicas in the North Pacific high seas[J]. Marine Fisheries, 2017, 39(4): 372−382.
    [20] 王良明, 李渊, 张然, 等. 西北太平洋日本鲭资源丰度分布与表温和水温垂直结构的关系[J]. 中国海洋大学学报(自然科学版), 2019, 49(11): 29−38.

    Wang Liangming, Li Yuan, Zhang Ran, et al. Relationship between the resource distribution of Scomber japonicus and seawater temperature vertical structure of northwestern Pacific Ocean[J]. Periodical of Ocean University of China, 2019, 49(11): 29−38.
    [21] 武胜男, 陈新军. 基于GLM和GAM的日本鲭太平洋群体补充量与产卵场影响因子关系分析[J]. 水产学报, 2020, 44(1): 61−70.

    Wu Shengnan, Chen Xinjun. Relationship between the recruitment of the Pacific-cohort of chub mackerel ( Scomber japonicus) and the influence factors on the spawning ground based on GLM and GAM[J]. Journal of Fisheries of China, 2020, 44(1): 61−70.
    [22] Yang Chao, Han Haibin, Zhang Heng, et al. Assessment and management recommendations for the status of Japanese sardine Sardinops melanostictus population in the Northwest Pacific[J]. Ecological Indicators, 2023, 148: 110111. doi: 10.1016/j.ecolind.2023.110111
    [23] Bertrand A, Segura M, Gutiérrez M, et al. From small-scale habitat loopholes to decadal cycles: a habitat-based hypothesis explaining fluctuation in pelagic fish populations off Peru[J]. Fish and Fisheries, 2004, 5(4): 296−316. doi: 10.1111/j.1467-2679.2004.00165.x
    [24] 高川, 陈茂楠, 周路, 等. 2020−2021年热带太平洋持续性双拉尼娜事件的演变[J]. 中国科学: 地球科学, 2022, 52(12): 2353−2372.

    Gao Chuan, Chen Maonan, Zhou Lu, et al. The 2020−2021 prolonged La Niña evolution in the tropical Pacific[J]. Science China Earth Sciences, 2022, 65(12): 2248−2266.
    [25] Kaneko H, Okunishi T, Seto T, et al. Dual effects of reversed winter-spring temperatures on year-to-year variation in the recruitment of chub mackerel ( Scomber japonicus)[J]. Fisheries Oceanography, 2019, 28(2): 212−227. doi: 10.1111/fog.12403
    [26] 陈丙见, 冯志萍, 余为. 厄尔尼诺和拉尼娜发生期太平洋褶柔鱼秋生群资源丰度的响应研究[J]. 中国水产科学, 2022, 29(11): 1636−1646.

    Chen Bingjian, Feng Zhiping, Yu Wei. Response of autumn cohort abundance of Japanese common squid ( Todarodes pacificus) during El Niño and La Niña events[J]. Journal of Fishery Sciences of China, 2022, 29(11): 1636−1646.
    [27] 周茉, 方星楠, 余为, 等. 厄尔尼诺和拉尼娜事件下西北太平洋柔鱼栖息地时空分布差异[J]. 上海海洋大学学报, 2022, 31(4): 984−993.

    Zhou Mo, Fang Xingnan, Yu Wei, et al. Difference of spatio-temporal distribution of neon flying squid Ommastrephes bartramiii in the Northwest Pacific Ocean under the El Niño and La Niña events[J]. Journal of Shanghai Ocean University, 2022, 31(4): 984−993.
    [28] Yu Wei, Wen Jian, Chen Xinjun, et al. Effects of climate variability on habitat range and distribution of chub mackerel in the East China Sea[J]. Journal of Ocean University of China, 2021, 20(6): 1483−1494. doi: 10.1007/s11802-021-4760-x
    [29] Zhang Ronghua, Gao Chuan, Feng Licheng. Recent ENSO evolution and its real-time prediction challenges[J]. National Science Review, 2022, 9(4): nwac052. doi: 10.1093/nsr/nwac052
    [30] Nishikawa H, Itoh S, Yasuda I, et al. Overlap between suitable nursery grounds for Japanese anchovy ( Engraulis japonicus) and Japanese sardine ( Sardinops melanostictus) larvae[J]. Aquaculture, Fish and Fisheries, 2022, 2(3): 179−188. doi: 10.1002/aff2.39
    [31] Gkanasos A, Schismenou E, Tsiaras K, et al. A three dimensional, full life cycle, anchovy and sardine model for the North Aegean Sea (Eastern Mediterranean): validation, sensitivity and climatic scenario simulations[J]. Mediterranean Marine Science, 2021, 22(3): 653−668. doi: 10.12681/mms.27407
    [32] Hsu J, Chang Y J, Kitakado T, et al. Evaluating the spatiotemporal dynamics of Pacific saury in the northwestern Pacific Ocean by using a geostatistical modelling approach[J]. Fisheries Research, 2021, 235: 105821. doi: 10.1016/j.fishres.2020.105821
    [33] Yatsu A. Review of population dynamics and management of small pelagic fishes around the Japanese Archipelago[J]. Fisheries Science, 2019, 85(4): 611−639. doi: 10.1007/s12562-019-01305-3
    [34] Sogawa S, Hidaka K, Kamimura Y, et al. Environmental characteristics of spawning and nursery grounds of Japanese sardine and mackerels in the Kuroshio and Kuroshio Extension area[J]. Fisheries Oceanography, 2019, 28(4): 454−467. doi: 10.1111/fog.12423
    [35] Takasuka A, Oozeki Y, Aoki I. Optimal growth temperature hypothesis: why do anchovy flourish and sardine collapse or vice versa under the same ocean regime?[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2007, 64(5): 768−776. doi: 10.1139/f07-052
    [36] Chavez F P, Ryan J, Lluch-Cota S E, et al. From anchovies to sardines and back: multidecadal change in the Pacific Ocean[J]. Science, 2003, 299(5604): 217−221. doi: 10.1126/science.1075880
    [37] 唐峰华, 戴澍蔚, 樊伟, 等. 西北太平洋公海日本鲭( Scomber japonicus)胃含物及其摄食等级研究[J]. 中国农业科技导报, 2020, 22(1): 138−148.

    Tang Fenghua, Dai Shuwei, Fan Wei, et al. Study on stomach composition and feeding level of chub mackerel in the Northwest Pacific[J]. Journal of Agricultural Science and Technology, 2020, 22(1): 138−148.
    [38] Oozeki Y, Carranza M Ñ, Takasuka A, et al. Synchronous multi-species alternations between the northern Humboldt and Kuroshio Current systems[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2019, 159: 11−21. doi: 10.1016/j.dsr2.2018.11.018
    [39] Nakayama S I, Takasuka A, Ichinokawa M, et al. Climate change and interspecific interactions drive species alternations between anchovy and sardine in the western North Pacific: detection of causality by convergent cross mapping[J]. Fisheries Oceanography, 2018, 27(4): 312−322. doi: 10.1111/fog.12254
    [40] Suda M, Watanabe C, Akamine T. Two-species population dynamics model for Japanese sardine Sardinops melanostictus and chub mackerel Scomber japonicus off the Pacific coast of Japan[J]. Fisheries Research, 2008, 94(1): 18−25. doi: 10.1016/j.fishres.2008.06.012
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  55
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-29
  • 修回日期:  2023-10-23
  • 网络出版日期:  2023-12-15
  • 刊出日期:  2024-01-31

目录

    /

    返回文章
    返回