The study on the early diagenetic processes in REY-rich sediments in Southeast Pacific Ocean and its indicative significance
-
摘要: 富稀土深海沉积物作为一种潜在矿产资源,近年来备受关注。研究发现,稀土元素(REY)和钇(Y)元素的富集过程很可能发生在沉积物−海水界面(SWI),但目前针对富稀土沉积物的早期成岩过程研究较少。本研究采集了东南太平洋富稀土海区两个站位的沉积物短柱,解析了REY在SWI的早期成岩过程及其对REY在沉积物中富集机制的影响。孔隙水中较低的Fe、Mn和较高的Mo、U、V浓度表明研究区沉积物处于氧化环境。对比底层海水中REY,孔隙水中的REY呈中稀土(MREE)富集特征。沉积物中REY的主要富集相态为磷酸盐相,而孔隙水中REY及其配分模式可能受控于沉积物中磷酸盐的含量。本研究表明,在稀土元素早期成岩过程中,原本与铁锰相等其他相态结合的REY重新进入到孔隙水中,最终被磷酸盐相吸附和埋藏,早期成岩过程是深海沉积物中REY富集的重要机制。Abstract: As potential mineral resources, rare earth elements (REY) and yttrium enriched sediments in the deep sea have attracted a lot of attention in recent years. It has been shown by studies that the enrichment process of REY is most likely to occur at the sediment-water interface (SWI), however studies on the early diagenetic processes in REY-enriched sediments are in general lacking. In this paper, we collected two short sediment cores in REY-enriched sediments in the Southeast Pacific Ocean, then we had conducted an in-depth analysis on the early diagenesis process of REY at SWI and its influence on the enrichment mechanism of REY in deep-sea sediment. The low Fe, Mn concentration and high Mo, U and V concentration in pore-water indicated that the sediment cores were in oxic environment. Compared to the REY in overlying water column, the dissolved REY in pore-water characterized by a middle rare earth elements (MREE). In sediment, phosphate phase is the main phase of REY, while the distribution pattern of REY in pore-water may be controlled by the phosphate content in sediments. Our results show that during the early diagenetic processes, the REY initially combined with Fe/Mn phase and other phases re-released into the pore-water, which is subsequently adsorbed by and eventually buried with the phosphate phase. Therefore, the early diagenetic process is an important mechanism of REY enrichment in deep sea sediments.
-
Key words:
- early diagenetic process /
- pore-water /
- rare earth elements /
- sediment /
- Southeast Pacific Ocean
-
图 1 南太平洋水团运移路径[28–30](a)和南太平洋研究区站位(b)
STSW:亚热带表层水,SAAW:亚南极水,AAIW:南极中层水,NPDW:北太平洋深层水,LCDW:下环极深层水,UCDW:上环极深层水,EUC:赤道潜流。S006、S020海水站位参考自文献[30]
Fig. 1 Water mass migration path in South Pacific Ocean[28–30] (a) and station locations in the study area of South Pacific Ocean (b)
STSW: Subtropical Surface Water, SAAW: Subantarctic Water, AAIW: Antarctic Intermediate Water, NPDW: North Pacific Deep Water, LCDW: Lower Circumpolar Deep Water, UCDW: Upper Circumpolar Deep Water, EUC: Equatorial Undercurrent. Stations S006 and S020 refer to reference [30]
表 1 标准海水(CASS-5、NASS-6)REY浓度分析结果与前人结果比较以及实验流程平均空白值和检测限(单位:pmol/L)
Tab. 1 The analyzed REY concentrations of certified seawater samples (CASS-5 and NASS-6), compared with the reported values in literature , and average blank value, detection limits of dissolved REY (unit: pmol/L)
元素 CASS-5 NASS-6 空白值(n = 4) 检测限 测试值 报道值a 测试值 报道值b Y 195.6 ± 2.7 – c 225.7 ± 1.4 229.0 ± 23.0 0.61 ± 0.22 0.66 La 57.5 ± 1.8 56.5 ± 1.3 70.4 ± 1.3 74.4 ± 4.3 0.37 ± 0.07 0.22 Ce 24.2 ± 1.1 24.1 ± 2.2 25.6 ± 0.9 30.0 ± 3.8 0.69 ± 0.10 0.29 Pr 8.2 ± 0.1 7.8 ± 1.1 10.6 ± 0.3 11.4 ± 1.1 0.05 ± 0.02 0.06 Nd 37.3 ± 1.2 34.8 ± 1.6 45.6 ± 2.8 46.3 ± 1.4 0.31 ± 0.07 0.21 Sm 8.4 ± 1.1 8.2 ± 0.4 7.8 ± 0.8 8.4 ± 1.2 0.04 ± 0.03 0.08 Eu 1.4 ± 0.1 1.3 ± 0.1 1.7 ± 0.3 1.7 ± 0.2 0.03 ± 0.02 0.05 Gd 8.0 ± 0.7 7.8 ± 1.0 9.6 ± 0.4 8.9 ± 1.3 0.07 ± 0.02 0.07 Tb 1.2 ± 0.1 1.2 ± 0.3 1.5 ± 0.2 1.5 ± 0.1 0.01 ± 0.01 0.02 Dy 7.8 ± 0.3 7.8 ± 0.5 9.5 ± 0.7 10.0 ± 0.5 0.06 ± 0.04 0.12 Ho 2.1 ± 0.1 2.0 ± 0.1 2.6 ± 0.1 2.4 ± 0.2 0.01 ± 0.01 0.02 Er 6.9 ± 0.3 6.4 ± 0.2 8.1 ± 0.4 8.0 ± 0.4 0.03 ± 0.03 0.08 Tm 1.1 ± 0.1 0.9 ± 0.0 1.3 ± 0.2 1.1 ± 0.1 0.01 ± 0.00 0.01 Yb 6.3 ± 0.6 6.3 ± 0.2 7.6 ± 0.3 7.7 ± 0.4 0.02 ± 0.02 0.05 Lu 1.2 ± 0.2 1.1 ± 0.0 1.5 ± 0.3 1.2 ± 0.1 0.01 ± 0.01 0.03 注:数据为平均值 ± 标准偏差;a.基于文献[31–32]计算的CASS-5中REY浓度的平均值;b.基于文献[31–33]计算的NASS-6中REY浓度的平均值;c.未有报道。 表 2 标准海水(NASS-6)分析结果
Tab. 2 Analytical results of the reference seawater (NASS-6)
NASS-6 Mo浓度/(nmol·L−1) U浓度/(nmol·L−1) V浓度/(nmol·L−1) 测量值(n = 17) 103.6 ± 4.5 12.8 ± 0.4 30.1 ± 2.5 标准值 103.1 ± 7.5 12.6a 28.7 ± 3.3 a. 未认证,仅供参考(加拿大国家研究委员会)。 表 3 沉积物中各组分和REY元素含量的皮尔森相关性分析
Tab. 3 Pearson correlation analysis result among other compositions and REY in sediment cores
Al2O3 CaO Fe2O3 MnO P2O5 REY Al2O3 1 CaO −0.85** 1 Fe2O3 0.90** −0.95* 1 MnO 0.43* −0.42* 0.41* 1 P2O5 0.99** −0.85** 0.90** 0.45** 1 REY 0.99** −0.85** 0.90** 0.41* 0.99** 1 注:**相关性在0.01水平上显著(双尾);*相关性在0.05水平上显著(双尾)。 -
[1] Elshkaki A. Sustainability of emerging energy and transportation technologies is impacted by the coexistence of minerals in nature[J]. Communications Earth & Environment, 2021, 2(1): 186. [2] Hatch G P. Dynamics in the global market for rare earths[J]. Elements, 2012, 8(5): 341−346. doi: 10.2113/gselements.8.5.341 [3] Chakhmouradian A R, Wall F. Rare earth elements: minerals, mines, magnets (and more)[J]. Elements, 2012, 8(5): 333−340. doi: 10.2113/gselements.8.5.333 [4] Balaram V. Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact[J]. Geoscience Frontiers, 2019, 10(4): 1285−1303. doi: 10.1016/j.gsf.2018.12.005 [5] Zhou Tiancheng, Shi Xuefa, Huang Mu, et al. The influence of hydrothermal fluids on the REY-rich deep-sea sediments in the Yupanqui Basin, eastern South Pacific Ocean: constraints from bulk sediment geochemistry and mineralogical characteristics[J]. Minerals, 2020, 10(12): 1141. doi: 10.3390/min10121141 [6] Szamałek K, Konopka G, Zglinicki K, et al. New potential source of rare earth elements[J]. Gospodarka Surowcami Mineralnymi-Mineral Resources Management, 2013, 29(4): 59−76. [7] Kato Y, Fujinaga K, Nakamura K, et al. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements[J]. Nature Geoscience, 2011, 4(8): 535−539. doi: 10.1038/ngeo1185 [8] 石学法, 毕东杰, 黄牧, 等. 深海稀土分布规律与成矿作用[J]. 地质通报, 2021, 40(2/3): 195−208.Shi Xuefa, Bi Dongjie, Huang Mu, et al. Distribution and metallogenesis of deep-sea rare earth elements[J]. Geological Bulletin of China, 2021, 40(2/3): 195−208. [9] Bi Dongjie, Shi Xuefa, Huang Mu, et al. Geochemical and mineralogical characteristics of deep-sea sediments from the western North Pacific Ocean: constraints on the enrichment processes of rare earth elements[J]. Ore Geology Reviews, 2021, 138: 104318. doi: 10.1016/j.oregeorev.2021.104318 [10] Takaya Y, Yasukawa K, Kawasaki T, et al. The tremendous potential of deep-sea mud as a source of rare-earth elements[J]. Scientific Reports, 2018, 8(1): 5763. doi: 10.1038/s41598-018-23948-5 [11] Kon Y, Hoshino M, Sanematsu K, et al. Geochemical characteristics of apatite in heavy REE-rich Deep-Sea Mud from Minami-Torishima Area, southeastern Japan[J]. Resource Geology, 2014, 64(1): 47−57. doi: 10.1111/rge.12026 [12] Labs-Hochstein J, MacFadden B J. Quantification of diagenesis in Cenozoic sharks: elemental and mineralogical changes[J]. Geochimica et Cosmochimica Acta, 2006, 70(19): 4921−4932. doi: 10.1016/j.gca.2006.07.009 [13] Elderfield H, Pagett R. Rare earth elements in ichthyoliths: variations with redox conditions and depositional environment[J]. Science of the Total Environment, 1986, 49: 175−197. doi: 10.1016/0048-9697(86)90239-1 [14] Ren Jiangbo, Liu Yan, Wang Fenlian, et al. Mechanism and influencing factors of REY enrichment in deep-sea sediments[J]. Minerals, 2021, 11(2): 196. doi: 10.3390/min11020196 [15] Liao Jianlin, Sun Xiaoming, Li Dengfeng, et al. New insights into nanostructure and geochemistry of bioapatite in REE-rich deep-sea sediments: LA-ICP-MS, TEM, and Z-contrast imaging studies[J]. Chemical Geology, 2019, 512: 58−68. doi: 10.1016/j.chemgeo.2019.02.039 [16] Elderfield H, Sholkovitz E R. Rare earth elements in the pore waters of reducing nearshore sediments[J]. Earth and Planetary Science Letters, 1987, 82(3/4): 280−288. [17] Haley B A, Klinkhammer G P, McManus J. Rare earth elements in pore waters of marine sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1265−1279. doi: 10.1016/j.gca.2003.09.012 [18] Liu Hongna, Li Li, Wang Xiaojing, et al. Determination of Rare Earth Elements in pore water samples of marine sediments using an offline preconcentration method[J]. Archives of Environmental Contamination and Toxicology, 2021, 81(4): 553−563. doi: 10.1007/s00244-020-00793-0 [19] Hatje V, Bruland K W, Flegal A R. Determination of rare earth elements after pre-concentration using NOBIAS-chelate PA-1®resin: method development and application in the San Francisco Bay plume[J]. Marine Chemistry, 2014, 160: 34−41. doi: 10.1016/j.marchem.2014.01.006 [20] Dick H J B, Lin Jian, Schouten H. An ultraslow-spreading class of ocean ridge[J]. Nature, 2003, 426(6965): 405−412. doi: 10.1038/nature02128 [21] Rouxel O, Shanks III W C, Bach W, et al. Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9−10 N[J]. Chemical Geology, 2008, 252(3/4): 214−227. [22] Lupton J E, Craig H. Excess 3He in oceanic basalts: evidence for terrestrial primordial helium[J]. Earth and Planetary Science Letters, 1975, 26(2): 133−139. doi: 10.1016/0012-821X(75)90080-1 [23] Faure V, Speer K. Deep circulation in the eastern South Pacific Ocean[J]. Journal of Marine Research, 2012, 70(5): 748−778. doi: 10.1357/002224012806290714 [24] 周天成, 石学法. 东南太平洋蒂基海盆深海富稀土沉积富集机制[C]//中国稀土学会2021学术年会论文摘要集. 成都: 中国稀土学会, 2021.Zhou Tiancheng, Shi Xuefa. Genesis of REY-rich deep-sea sediments in the Tiki Basin, eastern South Pacific Ocean[C]//Abstracts of the Annual Academic Conference of the Chinese Society of Rare Earths. Chengdu: The Chinese Society of Rare Earths, 2021. [25] 刘洪娜. 东南太平洋富稀土区沉积物−海水界面稀土元素的地球化学特征研究[D]. 青岛: 自然资源部第一海洋研究所, 2021.Liu Hongna. The geochemical recycling of rare earth elements at sediment-seawater interface in the REY-rich sediments of southeastern Pacific Ocean[D]. Qingdao: First Institute of Oceanography, Ministry of Natural Resources, 2021. [26] 王汾连, 何高文, 任江波, 等. 太平洋不同海域深海沉积物的稀土元素地球化学特征对比研究[J]. 岩石学报, 2023, 39(3): 719−730. doi: 10.18654/1000-0569/2023.03.06Wang Fenlian, He Gaowen, Ren Jiangbo, et al. Comparative study on the geochemical characteristics of rare earth elements in deep-sea sediments from different regions of the Pacific Ocean[J]. Acta Petrologica Sinica, 2023, 39(3): 719−730. doi: 10.18654/1000-0569/2023.03.06 [27] Zhou Tiancheng, Shi Xuefa, Huang Mu, et al. Genesis of REY-rich deep-sea sediments in the Tiki Basin, eastern South Pacific Ocean: evidence from geochemistry, mineralogy and isotope systematics[J]. Ore Geology Reviews, 2021, 138: 104330. doi: 10.1016/j.oregeorev.2021.104330 [28] Molina-Kescher M, Hathorne E C, Osborne A H, et al. The influence of basaltic islands on the oceanic REE distribution: a case study from the tropical South Pacific[J]. Frontiers in Marine Science, 2018, 5: 50. doi: 10.3389/fmars.2018.00050 [29] Grenier M, Jeandel C, Lacan F, et al. From the subtropics to the central equatorial Pacific Ocean: neodymium isotopic composition and rare earth element concentration variations[J]. Journal of Geophysical Research: Oceans, 2013, 118(2): 592−618. doi: 10.1029/2012JC008239 [30] 刘洪娜, 李力, 任艺君, 等. 南太平洋富稀土海区海水中的溶解态稀土元素空间分布特征研究[J]. 海洋学报, 2023, 45(1): 1−12.Liu Hongna, Li Li, Ren Yijun, et al. The spatial distribution characteristics of dissolved rare earth elements in seawater of REY-enriched region in South Pacific Ocean[J]. Haiyang Xuebao, 2023, 45(1): 1−12. [31] Wang B S, Lee C P, Ho T Y. Trace metal determination in natural waters by automated solid phase extraction system and ICP-MS: the influence of low level Mg and Ca[J]. Talanta, 2014, 128: 337−344. doi: 10.1016/j.talanta.2014.04.077 [32] Rousseau T C C, Sonke J E, Chmeleff J, et al. Rare earth element analysis in natural waters by multiple isotope dilution – sector field ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(4): 573−584. doi: 10.1039/c3ja30332b [33] Garcia-Solsona E, Jeandel C. Balancing rare earth element distributions in the northwestern Mediterranean Sea[J]. Chemical Geology, 2020, 532: 119372. doi: 10.1016/j.chemgeo.2019.119372 [34] Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell Scientific, 1985. [35] 任艺君. 长江口低氧区沉积物−海水界面氧化还原敏感元素的响应机制研究[D]. 青岛: 自然资源部第一海洋研究所, 2019.Ren Yijun. Study on response mechanism of redox sensitive elements at sediment-seawater interface in low oxygen zone of Yangtze River Estuary[D]. Qingdao: First Institute of Oceanography, Ministry of Natural Resources, 2019. [36] Wang Xiaojing, Li Li, Liu Jihua, et al. Early diagenesis of redox-sensitive trace metals in the northern Okinawa Trough[J]. Acta Oceanologica Sinica, 2019, 38(12): 14−25. doi: 10.1007/s13131-019-1512-5 [37] Middelburg J J, Levin L A. Coastal hypoxia and sediment biogeochemistry[J]. Biogeosciences, 2009, 6(7): 1273−1293. doi: 10.5194/bg-6-1273-2009 [38] Homoky W B, Conway T M, John S G, et al. Iron colloids dominate sedimentary supply to the ocean interior[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(13): e2016078118. [39] Sani R K, Peyton B M, Amonette J E, et al. Reduction of uranium(VI) under sulfate-reducing conditions in the presence of Fe(III)-(hydr) oxides[J]. Geochimica et Cosmochimica Acta, 2004, 68(12): 2639−2648. doi: 10.1016/j.gca.2004.01.005 [40] Deng Yinan, Ren Jiangbo, Guo Qingjun, et al. Rare earth element geochemistry characteristics of seawater and porewater from deep sea in western Pacific[J]. Scientific Reports, 2017, 7(1): 16539. doi: 10.1038/s41598-017-16379-1 [41] Deng Yinan, Guo Qingjun, Zhu Jiang, et al. Significant contribution of seamounts to the oceanic rare earth elements budget[J]. Gondwana Research, 2022, 112: 71−81. doi: 10.1016/j.gr.2022.09.016 [42] Abbott A N, Haley B A, McManus J, et al. The sedimentary flux of dissolved rare earth elements to the ocean[J]. Geochimica et Cosmochimica Acta, 2015, 154: 186−200. doi: 10.1016/j.gca.2015.01.010 [43] Sholkovitz E R, Piepgras D J, Jacobsen S B. The pore water chemistry of rare earth elements in Buzzards Bay sediments[J]. Geochimica et Cosmochimica Acta, 1989, 53(11): 2847−2856. doi: 10.1016/0016-7037(89)90162-2 [44] Hatje V, Bruland K W, Flegal A R. Increases in anthropogenic gadolinium anomalies and rare earth element concentrations in San Francisco Bay over a 20 year record[J]. Environmental Science & Technology, 2016, 50(8): 4159−4168. [45] Bau M, Dulski P. Anthropogenic origin of positive gadolinium anomalies in river waters[J]. Earth and Planetary Science Letters, 1996, 143(1/4): 245−255. [46] Nozaki Y, Zhang Jing, Amakawa H. The fractionation between Y and Ho in the marine environment[J]. Earth and Planetary Science Letters, 1997, 148(1/2): 329−340. [47] De Baar H J W, Bruland K W, Schijf J, et al. Low cerium among the dissolved rare earth elements in the central North Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 2018, 236: 5−40. doi: 10.1016/j.gca.2018.03.003 [48] 车宏, 胡邦琦, 丁雪, 等. 西太平洋深海沉积物孔隙水稀土元素地球化学特征及意义[J]. 海洋地质与第四纪地质, 2021, 41(1): 75−86.Che Hong, Hu Bangqi, Ding Xue, et al. Rare earth element geochemistry characteristics and implications of pore-water from deep sea sediment in Western Pacific Ocean[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 75−86. [49] Prakash L S, Ray D, Paropkari A L, et al. Distribution of REEs and yttrium among major geochemical phases of marine Fe-Mn-oxides: comparative study between hydrogenous and hydrothermal deposits[J]. Chemical Geology, 2012, 312−313: 127−137. doi: 10.1016/j.chemgeo.2012.03.024 [50] Takebe M. Carriers of rare earth elements in Pacific deep-sea sediments[J]. The Journal of Geology, 2005, 113(2): 201−215. doi: 10.1086/427669 [51] Liao Jianlin, Chen Jieyun, Sun Xiaoming, et al. Quantifying the controlling mineral phases of rare-earth elements in deep-sea pelagic sediments[J]. Chemical Geology, 2022, 595: 120792. doi: 10.1016/j.chemgeo.2022.120792 [52] Hsieh Y T, Bridgestock L, Scheuermann P P, et al. Barium isotopes in mid-ocean ridge hydrothermal vent fluids: a source of isotopically heavy Ba to the ocean[J]. Geochimica et Cosmochimica Acta, 2021, 292: 348−363. doi: 10.1016/j.gca.2020.09.037 [53] Hsieh Y T, Henderson G M. Barium stable isotopes in the global ocean: tracer of Ba inputs and utilization[J]. Earth and Planetary Science Letters, 2017, 473: 269−278. doi: 10.1016/j.jpgl.2017.06.024 [54] Yasukawa K, Nakamura K, Fujinaga K, et al. Tracking the spatiotemporal variations of statistically independent components involving enrichment of rare-earth elements in deep-sea sediments[J]. Scientific Reports, 2016, 6(1): 29603. doi: 10.1038/srep29603 [55] Yasukawa K, Liu Hanjie, Fujinaga K, et al. Geochemistry and mineralogy of REY-rich mud in the eastern Indian Ocean[J]. Journal of Asian Earth Sciences, 2014, 93: 25−36. doi: 10.1016/j.jseaes.2014.07.005 [56] Toyoda K, Tokonami M. Diffusion of rare-earth elements in fish teeth from deep-sea sediments[J]. Nature, 1990, 345(6276): 607−609. doi: 10.1038/345607a0 [57] 孙懿, 石学法, 鄢全树, 等. 中印度洋海盆富稀土沉积地球化学特征及富集机制研究[J]. 海洋学报, 2022, 44(11): 42−62.Sun Yi, Shi Xuefa, Yan Quanshu, et al. The study on geochemical characteristics and enrichment mechanism of deep sea REY-rich sediments in the Central Indian Ocean Basin[J]. Haiyang Xuebao, 2022, 44(11): 42−62.