Hydrodynamic performance study of a land-based OWC under the action of irregular wave
-
摘要: 为了研究真实海域中振荡水柱(OWC)波能转换装置的水动力性能,本文基于势流理论和高阶边界元方法,建立了不规则波与岸基式OWC波能装置相互作用的二维非线性数值模型,不规则波基于JONSWAP谱生成。为了考虑由于水体黏性引起的能量耗散,在气室内水面边界条件中引入人工黏性阻尼。并在大连理工大学波流水槽中开展了物理模型试验,对数值模型的有效性进行了验证。研究发现,在不规则波作用下,OWC波能装置的水动力效率相较于规则波作用下有所降低,特别是在低频波区域效率差值最大。与规则波相比,不规则波浪作用下装置峰值效率对应的频率变大。气室内的相对水面高程随着有效波高的增加而降低,而气室内相对气压则随有效波高的增加而增大。OWC波能装置的水动力效率受有效波高的影响较小,其峰值效率对应的频率不受波浪非线性的影响。本文可以为OWC波能装置的设计提供参考。Abstract: To study the hydrodynamic performance of an oscillating-water-column (OWC) wave energy converter in a real sea, a two-dimensional nonlinear numerical model of the interaction between irregular waves and a land-based OWC device is developed based on the potential flow theory and the high-order boundary element method (HOBEM) in this paper. The irregular waves are generated based on the JONSWAP spectrum. The viscous damping is introduced on the water surface boundary conditions inside the air chamber to consider the energy dissipation due to water viscosity. And physical modeling experiments are carried out in the wave-current flume at Dalian University of Technology to validate the numerical model. It is found that the OWC hydrodynamic efficiency under irregular waves is reduced in comparison with that under regular waves, especially in the low-frequency wave region where the efficiency difference is the largest. The frequency corresponding to the peak efficiency under the action of irregular waves is larger than that under regular waves. The dimensionless surface elevation inside the chamber decreases, while the dimensionless air pressure inside the chamber increases with the significant wave heights. The OWC hydrodynamic efficiency is less affected by the significant wave height. The frequency corresponding to the peak efficiency is not dependent on wave nonlinearity. This work can provide a reference for the design of OWCs.
-
表 1 物理装置的具体设计参数
Tab. 1 The specific design dimensions of the physical devices
结构参数 尺寸/m 前墙吃水d 0.125 气室宽度b 0.7 前墙厚度w 0.05 圆孔直径 D 0.067 气室高度ha 0.2 表 2 规则波与不规则波的波浪条件
Tab. 2 Wave conditions of regular and irregular waves
规则波 与规则波同波浪
参数的不规则波1与规则波同单宽波
功率的不规则波2T/s H/m Tp/s Hs/m Tp/s Hs/m 1.4 0.06 1.4 0.06 1.4 0.087 2 1.5 0.06 1.5 0.06 1.5 0.087 5 1.6 0.06 1.6 0.06 1.6 0.087 7 1.7 0.06 1.7 0.06 1.7 0.087 9 1.8 0.06 1.8 0.06 1.8 0.088 0 1.9 0.06 1.9 0.06 1.9 0.088 0 2.0 0.06 2.0 0.06 2.0 0.087 9 2.1 0.06 2.1 0.06 2.1 0.087 8 -
[1] Borthwick A G L. Marine renewable energy seascape[J]. Engineering, 2016, 2(1): 69−78. doi: 10.1016/J.ENG.2016.01.011 [2] Gallutia D, Tahmasbi Fard M, Gutierrez Soto M, et al. Recent advances in wave energy conversion systems: from wave theory to devices and control strategies[J]. Ocean Engineering, 2022, 252: 111105. doi: 10.1016/j.oceaneng.2022.111105 [3] 史宏达, 王传崑. 我国海洋能技术的进展与展望[J]. 太阳能, 2017(3): 30−37. doi: 10.3969/j.issn.1003-0417.2017.03.004Shi Hongda, Wang Chuankun. Progress and prospects of China’s ocean energy technology[J]. Solar Energy, 2017(3): 30−37. doi: 10.3969/j.issn.1003-0417.2017.03.004 [4] Zhang Yongxing, Zhao Yongjie, Sun Wei, et al. Ocean wave energy converters: technical principle, device realization, and performance evaluation[J]. Renewable and Sustainable Energy Reviews, 2021, 141: 110764. doi: 10.1016/j.rser.2021.110764 [5] Portillo J C C, Reis P F, Henriques J C C, et al. Backward bent-duct buoy or frontward bent-duct buoy? Review, assessment and optimisation[J]. Renewable and Sustainable Energy Reviews, 2019, 112: 353−368. doi: 10.1016/j.rser.2019.05.026 [6] 游亚戈, 盛松伟, 吴必军. 海洋波浪能发电技术现状与前景[C]//中国海洋工程学会. 第十五届中国海洋(岸)工程学术讨论会论文集(上). 北京: 海洋出版社, 2011.You Yage, Sheng Songwei, Wu Bijun. Status and prospects of ocean wave power generation technology[C]//Chinese Society of Marine Engineering. 15th China Ocean (Onshore) Engineering Symposium. Beijing: China Ocean Press, 2011. [7] Cheng Yong, Fu Lei, Dai Saishuai, et al. Experimental and numerical analysis of a hybrid WEC-breakwater system combining an oscillating water column and an oscillating buoy[J]. Renewable and Sustainable Energy Reviews, 2022, 169: 112909. doi: 10.1016/j.rser.2022.112909 [8] Cheng Yong, Fu Lei, Dai Saishuai, et al. Experimental and numerical investigation of WEC-type floating breakwaters: a single-pontoon oscillating buoy and a dual-pontoon oscillating water column[J]. Coastal Engineering, 2022, 177: 104188. doi: 10.1016/j.coastaleng.2022.104188 [9] 姚宇, 张壮壮, 许从昊. 基于RANS方程的桩式U-OWC装置波浪荷载分析[J]. 海洋工程, 2023, 41(2): 93−106.Yao Yu, Zhang Zhuangzhuang, Xu Conghao. Study on the wave loads on a pile-type U-OWC wave energy device based on RANS Equations[J]. The Ocean Engineering, 2023, 41(2): 93−106. [10] Mora A, Bautista E, Méndez F. Influence of a tapered and slender wave collector on the increment of the efficiency of an oscillating water column wave-energy converter[J]. Ocean Engineering, 2017, 129: 20−36. doi: 10.1016/j.oceaneng.2016.11.001 [11] Konispoliatis D N, Mavrakos S A. Hydrodynamic analysis of an array of interacting free-floating oscillating water column (OWC’s) devices[J]. Ocean Engineering, 2016, 111: 179−197. doi: 10.1016/j.oceaneng.2015.10.034 [12] Vyzikas T, Deshoulières S, Barton M, et al. Experimental investigation of different geometries of fixed oscillating water column devices[J]. Renewable Energy, 2017, 104: 248−258. doi: 10.1016/j.renene.2016.11.061 [13] 史宏达, 焦建辉, 刘臻, 等. 不规则波作用下OWC沉箱气室捕能效果研究[J]. 中国海洋大学学报(自然科学版), 2012, 42(1/2): 141−148.Shi Hongda, Jiao Jianhui, Liu Zhen, et al. Study on capture effect of air chamber of caisson breakwater as OWC under irregular waves[J]. Periodical of Ocean University of China, 2012, 42(1/2): 141−148. [14] Liu Zhen, Xu Chuanli, Kim K, et al. Experimental study on the overall performance of a model OWC system under the free-spinning mode in irregular waves[J]. Energy, 2022, 250: 123779. doi: 10.1016/j.energy.2022.123779 [15] Zabihi M, Mazaheri S, Montazeri Namin M, et al. Irregular wave interaction with an offshore OWC wave energy converter[J]. Ocean Engineering, 2021, 222: 108619. doi: 10.1016/j.oceaneng.2021.108619 [16] Gervelas R, Trarieux F, Patel M. A time-domain simulator for an oscillating water column in irregular waves at model scale[J]. Ocean Engineering, 2011, 38(8/9): 1007−1013. [17] Rezanejad K, Guedes Soares C, López I, et al. Experimental and numerical investigation of the hydrodynamic performance of an oscillating water column wave energy converter[J]. Renewable Energy, 2017, 106: 1−16. doi: 10.1016/j.renene.2017.01.003 [18] Zhou Zhimin, Ke Song, Wang Rongquan, et al. Hydrodynamic investigation on a land-fixed OWC wave energy device under irregular waves[J]. Applied Sciences, 2022, 12(6): 2855. doi: 10.3390/app12062855 [19] Ning D Z, Teng B, Eatock Taylor R, et al. Numerical simulation of non-linear regular and focused waves in an infinite water-depth[J]. Ocean Engineering, 2008, 35(8/9): 887−899. [20] Liu Zhen, Cui Ying, Li Ming, et al. Steady state performance of an axial impulse turbine for oscillating water column wave energy converters[J]. Energy, 2017, 141: 1−10. doi: 10.1016/j.energy.2017.09.068 [21] Dimakopoulos A S, Cooker M J, Bruce T. The influence of scale on the air flow and pressure in the modelling of oscillating water column wave energy converters[J]. International Journal of Marine Energy, 2017, 19: 272−291. doi: 10.1016/j.ijome.2017.08.004 [22] Liu Shuxue, Wang Xiantao, Li Muguo, et al. Active absorption wave maker system for irregular-waves[J]. China Ocean Engineering, 2003, 17(2): 203−214. [23] Ning Dazhi, Wang Rongquan, Zou Qingping, et al. An experimental investigation of hydrodynamics of a fixed OWC wave energy converter[J]. Applied Energy, 2016, 168: 636−648. doi: 10.1016/j.apenergy.2016.01.107 [24] Wang Rongquan, Ning Dezhi, Zhang Chongwei, et al. Nonlinear and viscous effects on the hydrodynamic performance of a fixed OWC wave energy converter[J]. Coastal Engineering, 2018, 131: 42−50. doi: 10.1016/j.coastaleng.2017.10.012 [25] 程蒙召. 岸基式振荡水柱波能装置水动力性能试验研究[D]. 大连: 大连理工大学, 2023.Cheng Mengzhao. Experimental investigation on the hydrodynamic performance of the land-based OWC wave energy converter[D]. Dalian: Dalian University of Technology, 2023.