A review of coral reef canopy hydrodynamics
-
摘要: 珊瑚礁冠层水动力学的研究不仅对维护珊瑚礁生态系统的健康以及生态修复具有指导意义,还能为在台风浪等极端波浪影响下的海岸带防灾减灾提供决策依据,也对预测珊瑚礁上的泥沙输运和珊瑚礁海岸线演变具有重要的参考价值。本文回顾了珊瑚礁冠层水动力学的研究现状,从冠层内外流动特性、冠层阻力特性及冠层阻力的模拟方法3个方面对当前该领域的研究进展进行了系统的综述,并提出未来冠层内外流动特性的研究可关注更复杂的波浪或波流共同作用下的水动力特性,冠层阻力特性应充分考虑冠层骨架结构的各向异性,冠层阻力的模拟可采用直接求解基于Navier-Stokes方程来复现冠层尺度下的精细化流场。Abstract: Study on the coral reef canopy hydrodynamics not only provides guidance for the health of coral reef ecosystem and the ecological restoration project, but also supports the decision-making process for the reef coast hazard prevention and mitigation under extreme wave events such as the typhoons. Meanwhile, it also has significant value for predicting the sediment transport over the reef and the reef coast evolution. This paper reviews the state-of-the-art research on reef canopy hydrodynamics, and systematically summarize the research progress from three aspects: the flows inside and outside of reef canopy, the characteristics of canopy resistance as well as the simulation of canopy resistance. This paper finally proposes the further research directions as follows: future study can focus on the hydrodynamics under more severe wave condition or under combined action of wave and current. It should also fully consider the anisotropy of canopy skeleton. Moreover, it can solve the Navier-Stokes equations directly to reproduce the finer flow field at the canopy scale.
-
Key words:
- canopy flow /
- resistance coefficient /
- shear stress /
- hydrodynamics /
- coral reef
-
图 2 珊瑚礁礁床边界层流动结构概念模型
图a和图b:单向流作用;图c和图d:波浪作用;图a和图c:光滑床面;图b和图d:粗糙床面[22]
Fig. 2 A conceptual model of the flow structure in the boundary layer of reef surface
Fig. a and Fig. b: unidirectional flow action; Fig. c and Fig. d: wave action; Fig. a and Fig. c: smooth surface; Fig. b and Fig. d: rough surface[22]
-
[1] Lowe R J, Shavit U, Falter J L, et al. Modeling flow in coral communities with and without waves: A synthesis of porous media and canopy flow approaches[J]. Limnology and Oceanography, 2008, 53(6): 2668−2680. doi: 10.4319/lo.2008.53.6.2668 [2] Lowe R J, Falter J L. Oceanic forcing of coral reefs[J]. Annual Review of Marine Science, 2015, 7: 43−66. doi: 10.1146/annurev-marine-010814-015834 [3] Finnigan J. Turbulence in plant canopies[J]. Annual Review of Fluid Mechanics, 2000, 32: 519−571. doi: 10.1146/annurev.fluid.32.1.519 [4] Asher S, Shavit U. The effect of water depth and internal geometry on the turbulent flow inside a coral reef[J]. Journal of Geophysical Research: Oceans, 2019, 124(6): 3508−3522. doi: 10.1029/2018JC014331 [5] Falter J L, Atkinson M J, Lowe R J, et al. Effects of nonlocal turbulence on the mass transfer of dissolved species to reef corals[J]. Limnology and Oceanography, 2007, 52(1): 274−285. doi: 10.4319/lo.2007.52.1.0274 [6] Lesser M P, Weis V M, Patterson M R, et al. Effects of morphology and water motion on carbon delivery and productivity in the reef coral, Pocillopora damicornis (Linnaeus)—Diffusion barriers, inorganic carbon limitation, and biochemical plasticity[J]. Journal of Experimental Marine Biology and Ecology, 1994, 178(2): 153−179. doi: 10.1016/0022-0981(94)90034-5 [7] Sebens K P, Helmuth B, Carrington E, et al. Effects of water flow on growth and energetics of the scleractinian coral Agaricia tenuifolia in Belize[J]. Coral Reefs, 2003, 22(1): 35−47. doi: 10.1007/s00338-003-0277-6 [8] Williams S L, Carpenter R C. Effects of unidirectional and oscillatory water flow on nitrogen fixation (acetylene reduction) in coral reef algal turfs, Kaneohe Bay, Hawaii[J]. Journal of Experimental Marine Biology and Ecology, 1998, 226(2): 293−316. doi: 10.1016/S0022-0981(97)00252-9 [9] Lowe R J, Koseff J R, Monismith S G. Oscillatory flow through submerged canopies: 1. Velocity structure[J]. Journal of Geophysical Research: Oceans, 2005, 110(C10): C10016. [10] Rosman J H, Hench J L. A framework for understanding drag parameterizations for coral reefs[J]. Journal of Geophysical Research: Oceans, 2011, 116(C8): C08025. [11] Monismith S G, Rogers J S, Koweek D, et al. Frictional wave dissipation on a remarkably rough reef[J]. Geophysical Research Letters, 2015, 42(10): 4063−4071. doi: 10.1002/2015GL063804 [12] Pomeroy A, Lowe R J, Ghisalberti M, et al. Mechanics of sediment suspension and transport within a fringing reef[C]//Proceedings of Coastal Sediments 215. San Diego: World Scientific Publishing, 2015. [13] Monismith S G. Hydrodynamics of coral reefs[J]. Annual Review of Fluid Mechanics, 2007, 39: 37−55. doi: 10.1146/annurev.fluid.38.050304.092125 [14] Raupach M R, Antonia R A, Rajagopalan S. Rough-wall turbulent boundary layers[J]. Applied Mechanics Reviews, 1991, 44(1): 1−25. doi: 10.1115/1.3119492 [15] Nepf H M, Ghisalberti M, White B, et al. Retention time and dispersion associated with submerged aquatic canopies[J]. Water Resources Research, 2007, 43(2): W04422. [16] Nepf H M. Flow and transport in regions with aquatic vegetation[J]. Annual Review of Fluid Mechanics, 2012, 44: 123−142. doi: 10.1146/annurev-fluid-120710-101048 [17] Nepf H M, Vivoni E R. Flow structure in depth-limited, vegetated flow[J]. Journal of Geophysical Research: Oceans, 2000, 105(C12): 28547−28557. doi: 10.1029/2000JC900145 [18] Grant W D, Madsen O S. Combined wave and current interaction with a rough bottom[J]. Journal of Geophysical Research: Oceans, 1979, 84(C4): 1797−1808. doi: 10.1029/JC084iC04p01797 [19] Lowe R J, Koseff J R, Monismith S G, et al. Oscillatory flow through submerged canopies: 2. Canopy mass transfer[J]. Journal of Geophysical Research: Oceans, 2005, 110(C10): C10017. [20] Luhar M, Coutu S, Infantes E, et al. Wave-induced velocities inside a model seagrass bed[J]. Journal of Geophysical Research: Oceans, 2010, 115(C12): C12005. [21] Infantes E, Orfila A, Simarro G, et al. Effect of a seagrass ( Posidonia oceanica) meadow on wave propagation[J]. Marine Ecology Progress Series, 2012, 456: 63−72. doi: 10.3354/meps09754 [22] Pomeroy A W M, Lowe R J, Ghisalberti M, et al. Sediment transport in the presence of large reef bottom roughness[J]. Journal of Geophysical Research: Oceans, 2017, 122(2): 1347−1368. doi: 10.1002/2016JC011755 [23] Reidenbach M A, Koseff J R, Monismith S G. Laboratory experiments of fine-scale mixing and mass transport within a coral canopy[J]. Physics of Fluids, 2007, 19(7): 075107. doi: 10.1063/1.2752189 [24] Van Rooijen A, Lowe R, Rijnsdorp D P, et al. Wave-driven mean flow dynamics in submerged canopies[J]. Journal of Geophysical Research: Oceans, 2020, 125(3): e2019JC015935. doi: 10.1029/2019JC015935 [25] Wiberg P L. A theoretical investigation of boundary layer flow and bottom shear stress for smooth, transitional, and rough flow under waves[J]. Journal of Geophysical Research: Oceans, 1995, 100(C11): 22667−22679. doi: 10.1029/95JC02377 [26] Yao Yu, Liu Yicheng, Chen Long, et al. Study on the wave-driven current around the surf zone over fringing reefs[J]. Ocean Engineering, 2020, 198: 106968. doi: 10.1016/j.oceaneng.2020.106968 [27] Zheng Jinhai, Yao Yu, Chen Songgui, et al. Laboratory study on wave-induced setup and wave-driven current in a 2DH reef-lagoon-channel system[J]. Coastal Engineering, 2020, 162: 103772. doi: 10.1016/j.coastaleng.2020.103772 [28] Davis K A, Pawlak G, Monismith S G. Turbulence and coral reefs[J]. Annual Review of Marine Science, 2020, 13: 343−373. [29] Reidenbach M A, Monismith S G, Koseff J R, et al. Boundary layer turbulence and flow structure over a fringing coral reef[J]. Limnology and Oceanography, 2006, 51(5): 1956−1968. doi: 10.4319/lo.2006.51.5.1956 [30] Huang Zhicheng, Lenain L, Melville W K, et al. Dissipation of wave energy and turbulence in a shallow coral reef lagoon[J]. Journal of Geophysical Research: Oceans, 2012, 117(C3): C03015. [31] Hench J L, Rosman J H. Observations of spatial flow patterns at the coral colony scale on a shallow reef flat[J]. Journal of Geophysical Research: Oceans, 2013, 118(3): 1142−1156. doi: 10.1002/jgrc.20105 [32] Mei C C. The Applied Dynamics of Ocean Surface Waves[M]. New York: Wiley, 1983. [33] Lentz S J, Churchill J H, Davis K A. Coral reef drag coefficients—surface gravity wave enhancement[J]. Journal of Physical Oceanography, 2018, 48(7): 1555−1566. doi: 10.1175/JPO-D-17-0231.1 [34] Feddersen F, Guza R T, Elgar S, et al. Velocity moments in alongshore bottom stress parameterizations[J]. Journal of Geophysical Research: Oceans, 2000, 105(C4): 8673−8686. doi: 10.1029/2000JC900022 [35] Soulsby R, Vlarke S. Bed shear-stresses under combined waves and currents on smooth and rough beds[R]. Wallingford, U. K. : HR Wallingford Ltd. , 2005. [36] Jonsson I G. Wave boundary layers and friction factors[C]. Proc. 10th International Conference Coastal Engineering. Tokyo: [s.n.], 1966: 127−148. [37] Yao Yu, He Wenrun, Jiang Changbo, et al. Wave-induced set-up over barrier reefs under the effect of tidal current[J]. Journal of Hydraulic Research, 2020, 58(3): 447−459. doi: 10.1080/00221686.2019.1623928 [38] Buckley M L, Lowe R J, Hansen J E, et al. Wave setup over a fringing reef with large bottom roughness[J]. Journal of Physical Oceanography, 2016, 46(8): 2317−2333. doi: 10.1175/JPO-D-15-0148.1 [39] Thomas F I M, Atkinson M J. Ammonium uptake by coral reefs: effects of water velocity and surface roughness on mass transfer[J]. Limnology and Oceanography, 1997, 42(1): 81−88. doi: 10.4319/lo.1997.42.1.0081 [40] Mcdonald C B, Koseff J R, Monismith S G. Effects of the depth to coral height ratio on drag coefficients for unidirectional flow over coral[J]. Limnology and Oceanography, 2006, 51(3): 1294−1301. doi: 10.4319/lo.2006.51.3.1294 [41] Lentz S J, Davis K A, Chuechill J H, et al. Coral reef drag coefficients–water depth dependence[J]. Journal of Physical Oceanography, 2017, 47(5): 1061−1075. doi: 10.1175/JPO-D-16-0248.1 [42] Asher S, Niewerth S, Koll K, et al. Vertical variations of coral reef drag forces[J]. Journal of Geophysical Research: Oceans, 2016, 121(5): 3549−3563. doi: 10.1002/2015JC011428 [43] Lowe R J, Falter J L, Bandet M D, et al. Spectral wave dissipation over a barrier reef[J]. Journal of Geophysical Research: Oceans, 2005, 110(C4): C04001. [44] Nelson R C. Hydraulic roughness of coral reef platforms[J]. Applied Ocean Research, 1996, 18(5): 265−274. doi: 10.1016/S0141-1187(97)00006-0 [45] Rogers J S, Monismith S G, Koweek D A, et al. Wave dynamics of a Pacific Atoll with high frictional effects[J]. Journal of Geophysical Research: Oceans, 2016, 121(1): 350−367. doi: 10.1002/2015JC011170 [46] Swart D H. Offshore sediment transport and equilibrium beach profiles[D]. Delft, Netherlands: Delft University of Technology, 1974. [47] Lentz S J, Churchill J H, Davis K A, et al. Surface gravity wave transformation across a platform coral reef in the Red Sea[J]. Journal of Geophysical Research: Oceans, 2016, 121(1): 693−705. doi: 10.1002/2015JC011142 [48] Akan A O. Open Channel Hydraulics[M]. UK: Butterworth-Heinemann, 2006. [49] Yao Yu, Huang Zhenhua, Monismith S G, et al. 1DH Boussinesq modeling of wave transformation over fringing reefs[J]. Ocean Engineering, 2012, 47: 30−42. doi: 10.1016/j.oceaneng.2012.03.010 [50] Yao Yu, Zhang Qiming, Chen Songgui, et al. Effects of reef morphology variations on wave processes over fringing reefs[J]. Applied Ocean Research, 2019, 82: 52−62. doi: 10.1016/j.apor.2018.10.021 [51] Yao Yu, Zhang Qiming, Becker J M, et al. Boussinesq modeling of wave processes in field fringing reef environments[J]. Applied Ocean Research, 2020, 95: 102025. doi: 10.1016/j.apor.2019.102025 [52] Roeber V, Cheung K F. Boussinesq-type model for energetic breaking waves in fringing reef environments[J]. Coastal Engineering, 2012, 70: 1−20. doi: 10.1016/j.coastaleng.2012.06.001 [53] Roeber V. Boussinesq-type model for nearshore wave processes in fringing reef environment[D]. Honolulu: University of Hawaii at Manoa, 2010. [54] Lashley G H, Roelvink D, Van Dongeren A, et al. Nonhydrostatic and surfbeat model predictions of extreme wave run-up in fringing reef environments[J]. Coastal Engineering, 2018, 137: 11−27. doi: 10.1016/j.coastaleng.2018.03.007 [55] Demirbilek Z, Nwogu O G, Ward D L. Laboratory study of wind effect on runup over fringing reefs report: 1: data report[R]. Washington: Army Engineer Research and Development Center, 2007. [56] Buckley M L, Lowe R J, Hansen J E, et al. Dynamics of wave setup over a steeply sloping fringing reef[J]. Journal of Physical Oceanography, 2015, 45(12): 3005−3023. doi: 10.1175/JPO-D-15-0067.1 [57] Drost E J F, Cuttler M V W, Lowe R J, et al. Predicting the hydrodynamic response of a coastal reef-lagoon system to a tropical cyclone using phase-averaged and surfbeat-resolving wave models[J]. Coastal Engineering, 2019, 152: 103525. doi: 10.1016/j.coastaleng.2019.103525 [58] Quataert E, Storlazzi C, Van Dongeren V, et al. The importance of explicitly modelling sea-swell waves for runup on reef-lined coasts[J]. Coastal Engineering, 2020, 160: 103704. doi: 10.1016/j.coastaleng.2020.103704 [59] Franklin G, Mariño-Tapia I, Torres-Freyermuth A. Effects of reef roughness on wave setup and surf zone currents[J]. Journal of Coastal Research, 2013, 118(sp2): 2005−2010. [60] Baldock T E, Shabani B, Callaghan D P, et al. Two-dimensional modelling of wave dynamics and wave forces on fringing coral reefs[J]. Coastal Engineering, 2020, 155: 103594. doi: 10.1016/j.coastaleng.2019.103594 [61] Morison J R, Johnson J W, Schaaf S A. The force exerted by surface waves on piles[J]. Journal of Petroleum Technology, 1950, 2(5): 149−154. doi: 10.2118/950149-G [62] Huang Zhenhua, Yao Yu, Sim S Y, et al. Interaction of solitary waves with emergent, rigid vegetation[J]. Ocean Engineering, 2011, 38(10): 1080−1088. doi: 10.1016/j.oceaneng.2011.03.003 [63] Suzuki T, Hu Zhan, Kumada K, et al. Non-hydrostatic modeling of drag, inertia and porous effects in wave propagation over dense vegetation fields[J]. Coastal Engineering, 2019, 149: 49−64. doi: 10.1016/j.coastaleng.2019.03.011 [64] Yao Yu, He Fang, Tang Zhengjiang, et al. A study of tsunami-like solitary wave transformation and run-up over fringing reefs[J]. Ocean Engineering, 2018, 149: 142−155. doi: 10.1016/j.oceaneng.2017.12.020 [65] Rijnsdorp D P, Buckley M I, Da Silva R F, et al. A numerical study of wave-driven mean flows and setup dynamics at a coral reef-lagoon system[J]. Journal of Geophysical Research: Oceans, 2021, 126(4): e2020JC016811. doi: 10.1029/2020JC016811 [66] Higuera P, Lara J, Losada I J. Three-dimensional interaction of waves and porous coastal structures using OpenFOAM®. Part I: Formulation and validation[J]. Coastal Engineering, 2014, 81: 243−258. [67] Del Jesus M. Three-dimensional interaction of water waves with coastal structures[D]. Santander: Universidad de Cantabria, 2011. [68] De Ridder M. Non-hydrostatic wave modelling of coral reefs with the addition of a porous in-canopy model[D]. Delft, Netherlands: Delft University of Technology, 2018. [69] Yao Yu, Chen Xiaojin, Xu Conghao, et al. Modeling solitary wave transformation and run-up over fringing reefs with large bottom roughness[J]. Ocean Engineering, 2020, 218: 108208. doi: 10.1016/j.oceaneng.2020.108208 [70] Yao Yu, Chen Xianjin, Xu Conghao, et al. Numerical modelling of wave transformation and runup over rough fringing reefs using VARANS equations[J]. Applied Ocean Research, 2022, 118: 102952. doi: 10.1016/j.apor.2021.102952 [71] He Dongbin, Ma Yuxiang, Dong Guohai, et al. A numerical investigation of wave and current fields along bathymetry with porous media[J]. Ocean Engineering, 2022, 244: 110333. doi: 10.1016/j.oceaneng.2021.110333 [72] Wang Yanxu, Yin Zegao, Liu Yong. Numerical investigation of solitary wave attenuation and resistance induced by rigid vegetation based on a 3-D RANS model[J]. Advances in Water Resources, 2020, 146: 103755. doi: 10.1016/j.advwatres.2020.103755 [73] Osorio-Cano J D, Alcérreca-Huerta J C, Osprio A F, et al. CFD modelling of wave damping over a fringing reef in the Colombian Caribbean[J]. Coral Reefs, 2018, 37(4): 1093−1108. doi: 10.1007/s00338-018-1736-4 [74] Yu Xiao, Rosman J H, Hench J L. Interaction of waves with idealized high-relief bottom roughness[J]. Journal of Geophysical Research: Oceans, 2018, 123(4): 3038−3059. doi: 10.1029/2017JC013515