Exploring and optimizing characterization of radionuclide fingerprint for tracking sediment source: Comparison of mangrove, seagrass,and coral reef ecosystems
-
摘要: 物质来源是沉积学研究的关键问题。沉积地球化学是沉积学的重要研究手段,放射性核素在沉积地球化学中的应用探索仍较为匮乏。本研究利用高纯锗γ谱仪同时测量红树林、海草床、珊瑚礁三大典型生态系统的沉积物中天然放射性核素(238U、226Ra、228Ra、40K),分析3种生态系统的沉积物中放射性核素分布特征,探索基于放射性核素的一维视角下活度特征、二维视角下核素对与活度比值、三维视角下三角图解的指纹表征技术,识别沉积物中不同物质的来源,并尝试推广至中国不同海域。本研究强调三维指纹表征技术—基于核素活度的238U-232Th(228Ra)-40K/10三角图解可以综合展示3种放射性核素的活度大小、组成比例、空间分布等信息,指出238U-232Th(228Ra)-40K/10三角图解可能是沉积物中物源识别的一种优化方法,可为沉积地球化学研究中的现有代用指标工具库提供有益补充。Abstract: Sediment source is a key issue in sedimentology. Although sediment geochemistry is an important tool in sedimentology, the explorations and applications of radionuclides in sediment geochemistry are still limited. In this study, naturally occurring radionuclides (238U, 226Ra, 228Ra, and 40K) in sediments were simultaneously measured using a high-purity germanium γ-spectrometer in three typical ecosystems of mangrove, seagrass, and coral reefs. The distribution characteristics of radionuclides in sediments from the these ecosystems were discussed in one-dimensional view of activity level, two-dimensional view of radionuclide pairs and activity ratio, and three-dimensional view of ternary diagram of radionuclides to identify distinct sources of sediments. Ternary diagram of 238U-232Th(228Ra)-40K/10 in sediments was applied in the China different seas for tracking distinct sediment sources. This study emphasized that the three-dimensional view of ternary diagram of 238U-232Th(228Ra)-40K/10 comprehensively exhibited the information of activity level, composition, and spatial distribution area of radionuclides. In conclusion, ternary diagram of 238U-232Th(228Ra)-40K/10 may be an optimized method for source identification in sediments and provide a supplement to the existing tools of geochemical proxies.
-
Key words:
- radionuclide /
- geochemical proxy /
- sediment source /
- mangrove /
- coral reefs /
- seagrass
-
图 2 红树林、海草床、珊瑚礁生态系统沉积物中238U、226Ra、228Ra、40K的活度箱线图
虚线代表所有沉积物中放射性核素的活度均值;箱线图内部横线代表中位数;箱线图上、中、下3个数值分别代表不同生态系统沉积物中放射性核素的最大活度、活度均值和最小活度
Fig. 2 Boxplots of 238U, 226Ra, 228Ra and 40K activities in sediments of mangrove, seagrass and coral reef ecosystems
The dotted lines represent the average activities of radionuclides in all sediments. The inner line of the boxplot depicts the median value. The upper, middle and lower values of the boxplot refer to the maximum activity, average activity, and minimum activity of radionuclides in sediments, respectively
图 3 红树林、海草床、珊瑚礁系统的沉积物中232Th(228Ra)-238U(a)、226Ra-238U(b)、40K-226Ra/238U(c)的关系
黄色十字代表中国土壤[30];k代表放射性核素活度比值;图c十字星号分别代表在不同生态系统沉积物中40K活度均值和226Ra/238U活度比值均值
Fig. 3 Correlation analysis of 232Th(228Ra)-238U (a), 226Ra-238U (b) and 40K-226Ra/238U (c) in sediments of mangrove, seagrass, and coral reef ecosystems
The yellow cross represents the average activities of radionuclides in China soil[30]; k means the activity ratio. The cross asterisk represents the average activities of 40K and average activity ratio of 226Ra/238U in sediments from these ecosystems in Figure c
图 4 红树林、海草床、珊瑚礁中沉积物的238U-232Th(228Ra)-40K/10三角图解(a,b,c)和226Ra-232Th(228Ra)-40K/10三角图解(e,f,g)以及3个生态系统的空间分布特征区域(d,h)
十字星号代表不同生态系统沉积物的活度均值;图a, b, c中括号内数值依次代表238U、232Th(228Ra)、40K/10的活度均值;图e, f, g中括号内数值依次代表226Ra、232Th(228Ra)、40K/10的活度均值。颜色棒代表3个核素端元的活度之和(Bq/kg)
Fig. 4 Ternary diagrams of 238U-232Th(228Ra)-40K/10 (a, b, c) and 226Ra-232Th(228Ra)-40K/10 (e, f, g) in sediments from mangrove, seagrass, and coral reef ecosystems and their spatial distribution areas (d, h)
The cross asterisks exhibit the average activities from different ecosystems. The values in the brackets refer to the average activities of 238U, 232Th (228Ra) and 40K/10 in Figures a, b, c. The values in the brackets exhibit the average activities of 226Ra, 232Th (228Ra) and 40K/10 in Figures e, f, g. The color bar quantitatively exhibits the sum of activities of three radionuclides’ endmembers (Bq/kg)
图 5 花岗岩[31]、玄武岩[31]、全球土壤[32]、地壳[33]的238U-232Th(228Ra)-40K/10三角图解
颜色棒代表3个核素端元的活度之和(Bq/kg)
Fig. 5 Ternary diagram of 238U-232Th(228Ra)-40K/10 of granite[31], basalt[31], global soil[32] and crust[33]
The color bar quantitatively exhibits the sum of activities of three radionuclides’ endmembers (Bq/kg)
图 6 渤海(a)[34–35]、黄海(b)[36–37]、东海(c)[29, 38]、南海(d)[12, 39–44]沉积物的238U-232Th(228Ra)-40K/10三角图解
虚线指示不同海域沉积物的空间分布特征区域;颜色棒代表核素端元的活度之和(Bq/kg);黄色十字代表中国土壤[30];十字星号代表中国不同海域沉积物的活度均值;图中括号内数值依次代表238U、232Th(228Ra)、40K/10的活度均值
Fig. 6 Ternary diagram of 238U-232Th(228Ra)-40K/10 in sediments from Bohai Sea (a)[34–35], Yellow Sea (b)[36–37], East China Sea (c)[29, 38], and South China Sea (d)[12, 39–44]
Dashed lines indicate the spatial distribution characteristics of sediments in different sea areas. The color bars represent the sum of the activities of 238U, 232Th(228Ra), and 40K/10 (Bq/kg). The yellow cross represents the average activities of radionuclides in China soil[30]. The cross asterisks exhibit the average activities from different sea areas. The values in the brackets refer to the average activities of 238U, 232Th (228Ra) and 40K/10
-
[1] Liu Zhifei, Zhao Yulong, Colin C, et al. Source-to-sink transport processes of fluvial sediments in the South China Sea[J]. Earth-Science Reviews, 2016, 153: 238−273. doi: 10.1016/j.earscirev.2015.08.005 [2] 石学法, 乔淑卿, 杨守业, 等. 亚洲大陆边缘沉积学研究进展(2011−2020)[J]. 矿物岩石地球化学通报, 2021, 40(2): 319−336.Shi Xuefa, Qiao Shuqing, Yang Shouye, et al. Progress in sedimentology research of the Asian Continental Margin (2011−2020)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(2): 319−336. [3] 杨守业, 韦刚健, 石学法. 地球化学方法示踪东亚大陆边缘源汇沉积过程与环境演变[J]. 矿物岩石地球化学通报, 2015, 34(5): 902−910. doi: 10.3969/j.issn.1007-2802.2015.05.003Yang Shouye, Wei Gangjian, Shi Xuefa. Geochemical approaches of tracing source-to-sink sediment processes and environmental changes at the East Asian Continental Margin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(5): 902−910. doi: 10.3969/j.issn.1007-2802.2015.05.003 [4] 王成善, 林畅松. 中国沉积学近十年来的发展现状与趋势[J]. 矿物岩石地球化学通报, 2021, 40(6): 1217−1229.Wang Chengshan, Lin Changsong. Development status and trend of sedimentology in China in recent ten years[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(6): 1217−1229. [5] Boggs S Jr. Principles of Sedimentology and Stratigraphy[M]. 5th ed. Boston: Pearson, 2011. [6] 国家自然科学基金委员会, 中国科学院. 沉积学[M]. 北京: 科学出版社, 2023.National Natural Science Foundation of China, Chinese Academy of Sciences. Sedimentology[M]. Beijing: Science Press, 2023. [7] 周锡强, 陈代钊, 刘牧, 等. 中国沉积学发展战略: 沉积地球化学研究现状与展望[J]. 沉积学报, 2017, 35(6): 1293−1316.Zhou Xiqiang, Chen Daizhao, Liu Mu, et al. The future of sedimentology in China: a review and perspective of sedimentary geochemistry[J]. Acta Sedimentologica Sinica, 2017, 35(6): 1293−1316. [8] 田景春, 张翔. 沉积地球化学[M]. 北京: 地质出版社, 2016.Tian Jingchun, Zhang Xiang. Sedimentary Geochemical[M]. Beijing: Geology Press, 2016. [9] White W M. Isotope Geochemistry[M]. Chichester: Wiley, 2015. [10] 林武辉, 余克服, 王英辉, 等. 海洋沉积过程的铀系放射性核素示踪技术: 物源识别、沉积、再悬浮[J]. 海洋地质与第四纪地质, 2020, 40(1): 60−70.Lin Wuhui, Yu Kefu, Wang Yinghui, et al. Using uranium-series radionuclides as tools for tracing marine sedimentary processes: Source identification, sedimentation rate, and sediment resuspension[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 60−70. [11] Lin Wuhui, Yu Kefu, Wang Yinghui, et al. Assessing the feasibility of the 228Th/228Ra dating method for young corals (< 10 a) by gamma spectrometry[J]. Quaternary Geochronology, 2021, 61: 101125. doi: 10.1016/j.quageo.2020.101125 [12] Lin Wuhui, Feng Yu, Yu Kefu, et al. Long-lived radionuclides in marine sediments from the Beibu Gulf, South China Sea: Spatial distribution, controlling factors, and proxy for transport pathway[J]. Marine Geology, 2020, 424: 106157. doi: 10.1016/j.margeo.2020.106157 [13] Lin Wuhui, Feng Yu, Yu Kefu, et al. Comparative study of radioactivity levels and radionuclide fingerprints in typical marine ecosystems of coral reefs, mangroves, and hydrothermal vents[J]. Marine Pollution Bulletin, 2020, 152: 110913. doi: 10.1016/j.marpolbul.2020.110913 [14] 林武辉, 余克服, 邓芳芳, 等. 南海现代珊瑚骨骼中放射性核素特征指纹[J]. 中国环境科学, 2019, 39(10): 4279−4289.Lin Wuhui, Yu Kefu, Deng Fangfang, et al. Fingerprints of radionuclides in modern coral skeletons in the South China Sea[J]. China Environmental Science, 2019, 39(10): 4279−4289 [15] Castrillejo M, Casacuberta N, Breier C F, et al. Reassessment of 90Sr, 137Cs, and 134Cs in the coast off Japan derived from the Fukushima Dai-ichi nuclear accident[J]. Environmental Science & Technology, 2016, 50(1): 173−180. [16] Song Shasha, Santos I R, Yu Huaming, et al. A global assessment of the mixed layer in coastal sediments and implications for carbon storage[J]. Nature Communications, 2022, 13(1): 4903. doi: 10.1038/s41467-022-32650-0 [17] 林武辉, 余锦萍, 余克服, 等. 北部湾涠洲岛海域沉积物中物质来源解析——来自元素、稳定同位素、放射性核素的证据[J]. 沉积学报, 2021, 39(3): 621−630.Lin Wuhui, Yu Jinping, Yu Kefu, et al. Source identification in a 210Pb-dated sediment core near Southwest Weizhou Island, Beibu Gulf: evidence from elements, stable isotopes, and radionuclides[J]. Acta Sedimentologica Sinica, 2021, 39(3): 621−630. [18] Gulin S B, Gulina L V, Sidorov I G, et al. 40K in the Black Sea: a proxy to estimate biogenic sedimentation[J]. Journal of Environmental Radioactivity, 2014, 134: 21−26. doi: 10.1016/j.jenvrad.2014.02.011 [19] Arriola-Velásquez A C, Tejera A, Guerra J G, et al. 226Ra, 228Ra and 40K as tracers of erosion and accumulation processes: A 3-year study on a beach with different sediment dynamics[J]. CATENA, 2021, 207: 105705. doi: 10.1016/j.catena.2021.105705 [20] Wang Jinlong, Zhang Weiguo, Baskaran M, et al. Fingerprinting sediment transport in river-dominated margins using combined mineral magnetic and radionuclide methods[J]. Journal of Geophysical Research: Oceans, 2018, 123(8): 5360−5374. doi: 10.1029/2018JC014174 [21] 林武辉, 冯禹, 余克服, 等. 北部湾沉积物中放射性核素的分布特征与控制因素[J]. 海洋学报, 2020, 42(2): 143−154.Lin Wuhui, Feng Yu, Yu Kefu, et al. Characteristics of radionuclides in sediments collected from the Beibu Gulf and influence factors[J]. Haiyang Xuebao, 2020, 42(2): 143−154. [22] Dai Zhijun, Du Jinzhou, Chu Ao, et al. Sediment characteristics in the North Branch of the Yangtze Estuary based on radioisotope tracers[J]. Environmental Earth Sciences, 2011, 62(8): 1629−1634. doi: 10.1007/s12665-010-0647-7 [23] Du Jinqiu, Wang Zhen, Du Jinzhou, et al. Radionuclides in sediment as tracers for evolution of modern sedimentary processes in the Bohai Sea[J]. Regional Studies in Marine Science, 2021, 48: 102061. doi: 10.1016/j.rsma.2021.102061 [24] Yang Weifeng, Chen Min, Zhang Xinxing, et al. Thorium isotopes (228Th, 230Th, 232Th) and applications in reconstructing the Yangtze and Yellow River floods[J]. International Journal of Sediment Research, 2013, 28(4): 588−595. doi: 10.1016/S1001-6279(14)60015-9 [25] Bezuidenhout J. The investigation of natural radionuclides as tracers for monitoring sediment processes[J]. Journal of Applied Geophysics, 2020, 181: 104135. doi: 10.1016/j.jappgeo.2020.104135 [26] 林武辉, 莫敏婷, 宁秋云, 等. 广西防城港核电周边红树林沉积物中放射性核素是否存在富集现象?[J]. 海洋环境科学, 2020, 39(5): 676−683.Lin Wuhui, Mo Minting, Ning Qiuyun, et al. Do the enrichment of radionuclides occur in the mangrove systems nearby the Fangchenggang Nuclear Power Plant in Guangxi?[J]. Marine Environmental Science, 2020, 39(5): 676−683. [27] Lin Wuhui, Yu Kefu, Wang Yinghui, et al. Radioactive level of coral reefs in the South China Sea[J]. Marine Pollution Bulletin, 2019, 142: 43−53. doi: 10.1016/j.marpolbul.2019.03.030 [28] 林武辉, 余克服, 王英辉, 等. 珊瑚礁区沉积物的极低放射性水平特征与成因[J]. 科学通报, 2018, 63(21): 2173−2183. doi: 10.1360/N972017-01101Lin Wuhui, Yu Kefu, Wang Yinghui, et al. Extremely low radioactivity in marine sediment of coral reefs and its mechanism[J]. Chinese Science Bulletin, 2018, 63(21): 2173−2183. doi: 10.1360/N972017-01101 [29] Wang Jinlong, Du Jinzhou, Bi Qianqian, et al. Natural radioactivity assessment of surface sediments in the Yangtze Estuary[J]. Marine Pollution Bulletin, 2017, 114(1): 602−608. doi: 10.1016/j.marpolbul.2016.09.040 [30] Wang Zuoyuan. Natural radiation environment in China[J]. International Congress Series, 2002, 1225: 39−46. doi: 10.1016/S0531-5131(01)00548-9 [31] Gabolde G, Cholet H, Nguyen J P, et al. Well Logging Handbook[M]. Paris: Éditions Technip, 2008. [32] UNSCEAR. Sources and effects of ionizing radiation[C]. UNSCEAR 2000 Report, UNSCEAR: New York, 2000. [33] Adams J A S, Weaver C E. Thorium-to-uranium ratios as indicators of sedimentary processes: Example of concept of geochemical facies[J]. AAPG Bulletin, 1958, 42(2): 387−430. [34] 杜金秋, 王震, 林武辉, 等. 渤海沉积物中放射性核素分布及其对沉积环境变化的响应[J]. 地球科学, 2021, 46(12): 4503−4516.Du Jinqiu, Wang Zhen, Lin Wuhui, et al. Distribution of radionuclides in sediments of Bohai Sea and their response to changes in sedimentary environment[J]. Earth Science, 2021, 46(12): 4503−4516. [35] 李培泉, 刘志和. 黄河下游及河口区表层沉积物中U, Ra, Th, 40K和137Cs的测定[J]. 海洋科学, 1990(5): 39−42.Li Peiquan, Liu Zhihe. Determination of radioisotopes in surface sediment from lower reach and estuary of Huanghe River[J]. Marine Sciences, 1990(5): 39−42. [36] 左书华, 韩志远, 李为华, 等. 连云港田湾海域沉积物中放射性核素分布与沉积速率[J]. 海洋环境科学, 2021, 40(5): 745−751.Zuo Shuhua, Han Zhiyuan, Li Weihua, et al. Radionuclide distribution in sediments and sedimentary rates in the Tianwan Sea area of Lianyungang[J]. Marine Environmental Science, 2021, 40(5): 745−751. [37] 刘广山, 李冬梅, 易勇, 等. 胶州湾沉积物的放射性核素含量分布与沉积速率[J]. 地球学报, 2008, 29(6): 769−777.Liu Guangshan, Li Dongmei, Yi Yong, et al. Radionuclide distribution in sediments and sedimentary rates in the Jiaozhou Bay[J]. Acta Geoscientica Sinica, 2008, 29(6): 769−777. [38] 陈锦芳, 刘广山, 黄奕普. 厦门潮间带表层沉积物天然放射系不平衡研究[J]. 台湾海峡, 2005, 24(3): 274−282.Chen Jinfang, Liu Guangshan, Huang Yipu. Disequilibrium of natural decay series in sediments of intertidal mudflats of Xiamen[J]. Journal of Oceangraphy in Taiwan Strait, 2005, 24(3): 274−282. [39] 赵峰, 吴梅桂, 李冬梅, 等. 陆丰核电周边海域表层沉积物放射性核素比活度水平研究初探[J]. 海洋环境科学, 2022, 41(1): 80−84.Zhao Feng, Wu Meigui, Li Dongmei, et al. A preliminary study of radioactivity level of surface sediments in the coastal area of Lufeng nuclear power plant[J]. Marine Environmental Science, 2022, 41(1): 80−84. [40] 赵峰, 吴梅桂, 周鹏, 等. 黄茅海—广海湾及其邻近海域表层沉积物中γ放射性核素含量水平[J]. 热带海洋学报, 2015, 34(4): 77−82.Zhao Feng, Wu Meigui, Zhou Peng, et al. Radionuclides in surface sediments from the Huangmaohai Estuary-Guanghai Bay and its adjacent sea area of the South China Sea[J]. Journal of Tropical Oceanography, 2015, 34(4): 77−82. [41] 吴梅桂, 周鹏, 赵峰, 等. 阳江核电站附近海域表层沉积物中γ放射性核素含量水平[J]. 海洋环境科学, 2018, 37(1): 43−47.Wu Meigui, Zhou Peng, Zhao Feng, et al. The concentration of γ radionuclides in surface marine sediments from Yangjiang nuclear power plant and its adjacent sea area, South China Sea[J]. Marine Environmental Science, 2018, 37(1): 43−47. [42] Liu Xinming, Lin Wuhui. Natural radioactivity in the beach sand and soil along the coastline of Guangxi Province, China[J]. Marine Pollution Bulletin, 2018, 135: 446−450. doi: 10.1016/j.marpolbul.2018.07.057 [43] 刘广山, 黄奕普, 陈敏, 等. 南海东北部表层沉积物天然放射性核素与137Cs[J]. 海洋学报, 2001, 23(6): 76−84.Liu Guangshan, Huang Yipu, Chen Min, et al. Specific activity and distribution of natural radionuclides and 137Cs in surface sediments of the northeastern South China Sea[J]. Haiyang Xuebao, 2001, 23(6): 76−84. [44] 刘广山, 黄奕普, 陈敏, 等. 南沙海区表层沉积物放射性核素分布特征[J]. 海洋科学, 2001, 25(8): 1−5.Liu Guangshan, Huang Yipu, Chen Min, et al. Distribution features of radionuclides in surface sediments of Nansha Sea areas[J]. Marine Sciences, 2001, 25(8): 1−5.