Joint retrieval of wind and current using airborne Doppler scatterometer
-
摘要: 多普勒散射计能够获取海面后向散射系数和多普勒频移,从而实现海面风场和海表流场的同步观测。本文基于机载多普勒散射计的观测数据,对多普勒散射计海面风场和海表流场联合反演模型进行研究,并与风场流场独立反演结果进行对比。结果表明,联合反演的流场精度显著优于独立反演结果;然而以欧洲中期天气预报中心的海面风场为参考时,联合反演风场的精度略低于独立反演结果。这说明多普勒频移信息对海面风场反演的贡献不太显著,但雷达后向散射系数信息(即风场)对流场反演有积极的作用,通过联合反演算法能够更有效地消除海面风场对流场反演的影响。研究结果有助于进一步理解海面风场和海表流场反演时的相互影响,并为星载多普勒散射计的数据处理提供了参考。Abstract: Doppler scatterometer is able to measure radar backscattering coefficient and Doppler frequency over sea surface, such that it can be used to retrieve sea surface wind and sea surface current simultaneously. This paper performs a study on the joint wind and current retrieval based on the observation data from an airborne Doppler scatterometer, which results are compared with those of independent retrieval. The results indicate that the accuracy of sea surface current is significantly improved by introducing the radar backscattering coefficients into the joint inversion method, however, the accuracy of the retrieved wind field from the joint inversion method is slightly lower than that of the independent wind inversion, compared to the European Centre for Medium-Range Weather Forecasts winds. This implies that the Doppler information has little influence on the wind retrieval, while the radar backscattering coefficients (the wind) have a remarkable impact on the sea surface current retrieval. The joint inversion algorithm can mitigates the effects of sea surface wind for the current retrieval. The results of this study provide a new insight to the interplay between wind inversion and current retrieval, and also provide a reference for the data processing of spaceborne Doppler scatterometer.
-
Key words:
- Doppler scatterometer /
- sea surface wind /
- sea surface current /
- joint inversion
-
表 1 各架次飞行情况
Tab. 1 Flight situation of each sortie
架次 飞行日期 飞行时间 海流计数据 数据大小/GB 1 8月6日 14:30–17:30 无 166 2 8月11日 14:30–17:10 有 387 3 8月15日 14:00–18:00 无 283 表 2 机载多普勒散射计技术指标
Tab. 2 Technical specifications of airborne Dopplerscatterometer
项目 技术指标 中心频率 35.9 GHz 脉冲带宽 5 MHz 脉冲时宽 4 μs 脉冲间隔 4 μs 采样频率 56 MHz 极化方式 VV 入射角 50° 飞行高度 3~3.5 km 飞行速度 180~200 km/h 发射峰值功率 20 W 脉冲重复周期 100 μs 表 3 不同反演算法下反演结果与海流计数据对比
Tab. 3 Comparison of the inversion results of different retrieval algorithms with respect to the ocean current meter data
纬度 经度 海流计
流速/(m·s−1)海流计
流向/(°)独立反演
流速/(m·s−1)独立反演
流向/(°)联合反演
流速/(m·s−1)联合反演
流向/(°)21.770 3°N 112.093 7°E 0.057 4 219.85 0.086 8 178.86 0.098 4 209.83 21.706 7°N 112.094 2°E 0.246 1 176.95 0.352 5 169.55 0.313 3 194.62 21.647 1°N 112.098 7°E 0.189 4 83.06 0.356 3 98.13 0.306 3 85.64 21.515 1°N 112.106 2°E 0.057 9 162.67 0.125 2 178.68 0.092 3 175.32 表 4 不同反演算法下海表流场反演精度
Tab. 4 Retrieval accuracy of sea surface current field under different retrieval algorithms
反演精度评估 Bias SD RMSE 独立反演流速/(m·s–1) 0.09 0.05 0.11 独立反演流向/(°) –4.23 22.95 23.33 联合反演流速/(m·s–1) 0.06 0.03 0.07 联合反演流向/(°) 5.81 10.58 12.07 -
[1] Omand M M, D’Asaro E A, Lee C M, et al. Eddy-driven subduction exports particulate organic carbon from the spring bloom[J]. Science, 2015, 348(6231): 222−225. doi: 10.1126/science.1260062 [2] Renault L, Molemaker M J, Gula J, et al. Control and stabilization of the gulf stream by oceanic current interaction with the atmosphere[J]. Journal of Physical Oceanography, 2016, 46(11): 3439−3453. doi: 10.1175/JPO-D-16-0115.1 [3] Chen Ru, Flierl G R, Wunsch C. A description of local and nonlocal eddy-mean flow interaction in a global eddy-permitting state estimate[J]. Journal of Physical Oceanography, 2014, 44(9): 2336−2352. doi: 10.1175/JPO-D-14-0009.1 [4] Stoffelen A, Kumar R, Zou Juhong, et al. Ocean surface vector wind observations[M]//Barale V, Gade M. Remote Sensing of the Asian Seas. Cham: Springer, 2019: 429−447. [5] Guo Qiaoying, Xu Xiazhen, Zhang Kangyu, et al. Assessing global ocean wind energy resources using multiple satellite data[J]. Remote Sensing, 2018, 10(1): 100. [6] Lang Shuyan, Lin Wenming, Zhang Yi, et al. On the quality control of HY-2 scatterometer high winds[J]. Remote Sensing, 2022, 14(21): 5565. doi: 10.3390/rs14215565 [7] Liang Guozhou, Yang Jungang, Wang Jichao. Accuracy evaluation of CFOSAT SWIM L2 products based on NDBC buoy and Jason-3 altimeter data[J]. Remote Sensing, 2021, 13(5): 887. doi: 10.3390/rs13050887 [8] Fois F. Enhanced ocean scatterometry[D]. Delft: Delft University of Technology, 2015. [9] Fois F, Hoogeboom P, Le Chevalier F, et al. DOPSCAT: a mission concept for a Doppler wind-scatterometer[C]//2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Milan: IEEE, 2015: 2572−2575. [10] Fois F, Hoogeboom P, Le Chevalier F, et al. An analytical model for the description of the full-polarimetric sea surface Doppler signature[J]. Journal of Geophysical Research: Oceans, 2015, 120(2): 988−1015. doi: 10.1002/2014JC010589 [11] Bao Qingliu, Dong Xiaolong, Zhu Di. Ocean surface current measurement using pencil-beam rotating scatterometer[C]//2014 IEEE Geoscience and Remote Sensing Symposium. Quebec City: IEEE, 2014: 684−687. [12] Bao Qingliu, Lin Mingsen, Zhang Youguang, et al. The ocean surface current inversion mehtod of Doppler scatterometer[C]//2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Fort Worth, TX: IEEE, 2017: 1962−1965. [13] Rodríguez E, Wineteer A, Perkovic-Martin D, et al. Estimating ocean vector winds and currents using a Ka-band pencil-beam Doppler scatterometer[J]. Remote Sensing, 2018, 10(4): 576. doi: 10.3390/rs10040576 [14] Spencer M W, Wu C, Long D G. Improved resolution backscatter measurements with the SeaWinds pencil-beam scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1): 89−104. doi: 10.1109/36.823904 [15] Miao Yuanjing, Dong Xiaolong, Bao Qingliu, et al. Perspective of a Ku-Ka dual-frequency scatterometer for simultaneous wide-swath ocean surface wind and current measurement[J]. Remote Sensing, 2018, 10(7): 1042. doi: 10.3390/rs10071042 [16] Zhang Jingyu, Dong Xiaolong, Zhu Di, et al. Airborne validation experiments for spaceborne Doppler scatterometers and the joint observation of wind and currents[C]//2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. Brussels: IEEE, 2021: 3209−3212. [17] Chelton D B, Schlax M G, Samelson R M, et al. Prospects for future satellite estimation of small-scale variability of ocean surface velocity and vorticity[J]. Progress in Oceanography, 2019, 173: 256−350. doi: 10.1016/j.pocean.2018.10.012 [18] Ardhuin F, Brandt P, Gaultier L, et al. SKIM, a candidate satellite mission exploring global ocean currents and waves[J]. Frontiers in Marine Science, 2019, 6: 209. doi: 10.3389/fmars.2019.00209 [19] Du Yan, Dong Xiaolong, Jiang Xingwei, et al. Ocean surface current multiscale observation mission (OSCOM): simultaneous measurement of ocean surface current, vector wind, and temperature[J]. Progress in Oceanography, 2021, 193: 102531. doi: 10.1016/j.pocean.2021.102531 [20] 杜岩, 董晓龙, 蒋兴伟, 等. 全球海表流场多尺度结构观测卫星计划[J]. 空间科学学报, 2022, 42(5): 849−861. doi: 10.11728/cjss2022.05.2022-0047Du Yan, Dong Xiaolong, Jiang Xingwei, et al. Ocean surface current multiscale observation mission[J]. Chinese Journal of Space Science, 2022, 42(5): 849−861. doi: 10.11728/cjss2022.05.2022-0047 [21] Lin Wenming, Dong Xiaolong, Portabella M, et al. A perspective on the performance of the CFOSAT rotating fan-beam scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 627−639. doi: 10.1109/TGRS.2018.2858852 [22] Yurovsky Y Y, Kudryavtsev V N, Grodsky S A, et al. Ka-band dual copolarized empirical model for the sea surface radar cross section[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(3): 1629−1647. doi: 10.1109/TGRS.2016.2628640 [23] Rodriguez E, Perkovic-Martin D, Baldi C, et al. Ka-band doppler scatterometer for measurements of ocean surface vector winds and currents[C]//Proceedings of Earth Science Technology Forum ESTF, Leesburg,Virginia: [s.n.], 2014. [24] Romeiser R, Thompson D R. Numerical study on the along-track interferometric radar imaging mechanism of oceanic surface currents[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1): 446−458. doi: 10.1109/36.823940 [25] Freilich M H. SeaWinds: algorithm theoretical basis document[R]. Washington: NASA, 2000. [26] Bao Qingliu, Lin Mingsen, Zhang Youguang, et al. Ocean surface current inversion method for a Doppler scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11): 6505−6516. doi: 10.1109/TGRS.2017.2728824