Analysis of the Cenozoic tectonic sedimentary evolution and its dynamic mechanism in the Yinggehai Basin
-
摘要: 南海西北陆缘构造演化极其复杂,受到红河断裂、海南地幔柱和南海形成演化等多种因素的控制。莺歌海盆地位于南海西北部,发育了巨厚的新生代沉积物,详细记录了南海西北陆缘新生代的演化历史。但是莺歌海盆地新生代以来主要受到何种构造因素的控制目前还不太清楚。本文在莺歌海盆地较为均匀地选择了7口钻井和23口模拟井,通过空盆构造沉降方法重建了莺歌海盆地的构造沉降量、构造沉降速率和沉积速率,同时运用重力反演方法模拟了莺歌海盆地深部地壳结构,并结合前人研究成果进行了综合分析。结果发现莺歌海盆地在裂陷期(45~23 Ma BP),盆地北部和中部沉降速率较大,南部沉降速率较小;在裂后期(23~0 Ma BP), 盆地北部和中部沉降速率存在两期“台阶式”上升,分别为23~11.7 Ma BP和11.7 Ma BP至今,北部裂后期构造沉降速率最大可达80 m/Ma,中部最大可达110 m/Ma;南部地堑和隆起裂后期分别在11.7~5.7 Ma BP和15.9~11.7 Ma BP构造沉降速率最大可达70 m/Ma。莺歌海盆地新生代整体上表现为沉降速率与沉积速率变化基本一致,说明构造沉降对沉积速率具有显著的控制作用。重力反演发现莺歌海盆地可能存在下地壳高密度异常体,结合盆地沉积物内部钻遇玄武岩,我们推测下地壳高密度异常体为基性侵入体。通过与南海周边其他沉积盆地沉降速率对比发现,几乎所有盆地都在中中新世−晚中新世(15.9~11.7 Ma BP)发生了加速沉降事件,我们认为这可能跟南海海盆停止扩张导致大陆边缘次生地幔对流消失有关。莺歌海盆地5.7 Ma BP至今的加速沉降则可能与红河断裂右旋走滑活动有关。Abstract: The tectonic evolution of the northwestern continental margin of the South China Sea were controlled by many factors, such as the Red River Fault, the Hainan mantle plume and the formation and evolution of the South China Sea. The Yinggehai Basin is located in the northwest of the South China Sea, where thick Cenozoic sediments were deposited. The Cenozoic evolution history of the northwestern continental margin of the South China Sea was recorded in detail in the Yinggehai Basin. However, which factor has mainly controlled the evolution of the Yinggehai Basin since the Cenozoic is still ambiguous. In this paper, 7 drilling wells and 23 simulated wells were selected in the Yinggehai Basin, and the sedimentation rate and subsidence rate of the Yinggehai Basin were reconstructed by empty basin tectonic subsidence analysis method. The deep structure of the Yinggehai Basin was simulated by gravity inversion method based on previous study. The results show that during the rift period, the subsidence rate of the Yinggehai Basin in the north and middle sections is larger than in the south section. There are two stages of “step acceleration subsidence” in the north and middle sections, which are 23–11.7 Ma BP and 11.7 Ma BP–present, respectively. The maximum tectonic subsidence rate can be up to 80 m/Ma in the post rift stage in the north section and about 110 m/Ma in the middle section. The maximum tectonic subsidence rate of the Southern Graben and Uplift is both close to 70 m/Ma during the periods of 11.7–5.7 Ma BP and 15.9–11.7 Ma BP, respectively. The Cenozoic subsidence of the Yinggehai Basin is consistent with the change of sedimentary rate, indicates that tectonic subsidence plays a significant role on sedimentary evolution. According to the results of gravity inversion, it may be lower crust high density anomaly intrusion underlying the Yinggehai Basin. We suggested it may be basic rock according to the drilling basalts in the sediments. By comparing with the subsidence rate of surrounding basins in the South China Sea, the acceleration subsidence in the 15.9–11.7 Ma BP may be related to the disappearance of secondary mantle convection due to the ceasing of the seafloor spreading of the South China Sea. The 5.7 Ma BP–present accelerated subsidence of the Yinggehai Basin may be related to the dextral strike-slip activity of the Red River Fault.
-
Key words:
- Yinggehai Basin /
- Red River Fault /
- tectonic sedimentary evolution /
- gravity inversion
-
图 1 南海新生代沉积盆地分布(a)和莺歌海盆地构造单元分布(b)
HN:河内凹陷,LG:临高凸起,YX:莺西斜坡,YD:莺东斜坡,ZY:中央凹陷,ZJ:中建凸起,GY:广义地堑,SH:顺化子盆地,GL:广乐隆起
Fig. 1 Distribution of Cenozoic basins in the South China Sea (a) and distribution of the structural units in the Yinggehai Basin (b)
HN: Hanoi Sag, LG: Lingao Uplift, YX: Yingxi Slope, YD: Yingdong Slope, ZY: Central Sag, ZJ: Zhongjian Uplift, GY: Guangyi Graben, SH: Hue Sub-Basin, GL: Guangle Uplift
图 7 大陆边缘次生地幔对流模式
a. 15 Ma BP以前洋中脊主地幔对流引发大陆边缘次生地幔对流;b. 15 Ma BP以后,次生地幔对流消失导致大陆边缘快速沉降
Fig. 7 Model of the secondary mantle convection in the continental margin
a. Before 15 Ma BP, the secondary mantle convection caused by the primary mantle convection in the ridge of the South China Sea; b. after 15 Ma BP, the disappearance of secondary mantle convection leads to the acceleration of subsidence in the continental margin
表 1 莺歌海盆地LG1120井参数表(位置见图1)[21]
Tab. 1 The data of the LG1120 drilling well in the Yinggehai Basin (location see figure 1)[21]
界面
名称界面深度/m 年龄/Ma 地层名称 最小古水深/m 最大古水深/m 沉积环境 岩性
编码T0 65 0 乐东组 65 65 浅海 1.53 T30 2 350 5.7 莺歌海组 20 150 浅海 1.65 T40 2 375 11.7 黄流组 0 20 滨海 1.77 T50 3 272 15.9 梅山组 1 20 滨海 1.6 T60 3 803 23 三亚组 0 1 湖泊 1.54 Tg 8 734 45 岭头组 0 0 湖泊 1.61 -
[1] 夏斌, 吕宝凤, 吴国干, 等. 南海北部新生代盆地构造迁移及其对烃源岩的制约作用[J]. 天然气地球科学, 2007, 18(5): 629−634.Xia Bin, Lü Baofeng, Wu Guogan, et al. The Cenozoic tectonic transport and its control on the source rock in the northern Sourth China Sea[J]. Natural Gas Geoscience, 2007, 18(5): 629−634. [2] Clift P D, Sun Z. The sedimentary and tectonic evolution of the Yinggehai–Song Hong Basin and the southern Hainan margin, South China Sea: Implications for Tibetan Uplift and monsoon intensification[J]. Journal of Geophysical Research, 2006, 111(B6): B06405. [3] 孙珍, 钟志洪, 周蒂. 莺歌海盆地构造演化与强烈沉降机制的分析和模拟[J]. 地球科学–中国地质大学学报, 2007, 32(3): 347−356.Sun Zhen, Zhong Zhihong, Zhou Di. The analysis and analogue modeling of the tectonic evolution and strong subsidence in the Yinggehai Basin[J]. Earth Science–Journal of China University of Geosciences, 2007, 32(3): 347−356. [4] 陈文寄, 李齐, 汪一鹏. 哀牢山–红河左旋走滑剪切带中新世抬升的时间序列[J]. 地质论评, 1996, 42(5): 385−390.Chen Wenji, Li Qi, Wang Yipeng. Miocene diachronic uplift along the Ailao Mountains-Red River left-lateral strike-slip shear zone[J]. Geological Review, 1996, 42(5): 385−390. [5] 李朝阳, 姜效典, 李德勇, 等. 红河断裂带中南段上新世以来构造隆升及成因[J]. 中国海洋大学学报(自然科学版), 2016, 46(7): 90−98.Li Chaoyang, Jiang Xiaodian, Li Deyong, et al. Tectonic uplift and its regime in the central southern segment of the Red River fault zone since Pliocene[J]. Periodical of Ocean University of China, 2016, 46(7): 90−98. [6] 向宏发, 韩竹军, 虢顺民, 等. 红河断裂带大型右旋走滑运动定量研究的若干问题[J]. 地球科学进展, 2004, 19(S1): 56−59.Xiang Hongfa, Han Zhujun, Guo Shunmin, et al. Processing about quantitative study of large-scale strike-slip movement on Red River fault zone[J]. Advance in Earth Sciences, 2004, 19(S1): 56−59. [7] Bui H B, Ngo X T, Song Y, et al. K-Ar dating of fault gouges from the red river fault zone of Vietnam[J]. Acta Geologica Sinica-English Edition, 2016, 90(5): 1653−1663. doi: 10.1111/1755-6724.12808 [8] Wang Yang, Wang Yuejun, Schoenbohm L M, et al. Cenozoic exhumation of the ailaoshan-Red River shear zone: new insights from low-temperature thermochronology[J]. Tectonics, 2020, 39(9): e2020TC006151. doi: 10.1029/2020TC006151 [9] Ren Longlong, Bo Zhang, Zheng Dewen, et al. Tectonic transformation and its exhumation history of the Ailao Shan-Red River shear zone in Oligocene: evidences from apatite fission track thermochronology of the southern segment of the Ailao Shan Range[J]. Acta Petrologica Sinica, 2020, 36(6): 1787−1802. doi: 10.18654/1000-0569/2020.06.09 [10] 方念乔, 姚伯初, 万玲, 等. 华南和南海北部陆缘岩石圈速度结构特征与沉积盆地成因[J]. 地球科学–中国地质大学学报, 2007, 32(2): 147−154.Fang Nianqiao, Yao Bochu, Wan Ling, et al. The velocity structure of the lithosphere and the origin of sedimentary basins in the South China and northern margin of the South China Sea[J]. Earth Science–Journal of China University of Geosciences, 2007, 32(2): 147−154. [11] 李三忠, 索艳慧, 刘鑫, 等. 南海的盆地群与盆地动力学[J]. 海洋地质与第四纪地质, 2012, 32(6): 55−78.Li Sanzhong, Suo Yanhui, Liu Xin, et al. Basin dynamics and basin groups of the South China Sea[J]. Marine Geology & Quaternary Geology, 2012, 32(6): 55−78. [12] 谢辉, 周蒂, 石红才, 等. 珠江口盆地–琼东南盆地深水区新生代构造沉积演化对比分析[J]. 海洋学报, 2021, 43(3): 48−61.Xie Hui, Zhou Di, Shi Hongcai, et al. Comparative study on the Cenozoic tectonic and sedimentary evolution in the deep water areas of the Zhujiang River Estuary Basin and the Qiongdongnan Basin[J]. Haiyang Xuebao, 2021, 43(3): 48−61. [13] 谢辉. 珠江口盆地白云深水区新生代沉降史分析及其构造涵义[D]. 北京: 中国科学院大学, 2014.Xie Hui. The Cenozoic subsidence history and its implications of the deepwater sags in the Pearl River Mouth Basin[D]. Beijing: University of Chinese Academy of Sciences, 2014. [14] Xie Hui, Zhou Di, Pang Xiong, et al. Cenozoic sedimentary evolution of deepwater sags in the Pearl River Mouth Basin, northern South China Sea[J]. Marine Geophysical Research, 2013, 34(3/4): 159−173. [15] 谢辉, 区浩瑛, 石红才, 等. 南海北部陆坡深水区新生代沉积演化东西部对比分析[J]. 广东海洋大学学报, 2020, 40(4): 41−50.Xie Hui, Ou Haoying, Shi Hongcai, et al. Contrastive analysis on the sedimentary evolution in the deep water areas from west to east, northern South China Sea[J]. Journal of Guangdong Ocean University, 2020, 40(4): 41−50. [16] 龚再升, 李思田, 谢泰俊, 等. 南海北部大陆边缘盆地分析与油气聚集[M]. 北京: 科学出版社, 1997.Gong Zaisheng, Li Sitian, Xie Taijun, et al. Continental Margin Basin Analysis and Hydrocarbon Accumulation of the Northern South China Sea[M]. Beijing: Science Press, 1997. [17] Lin Changsong, Zhang Yanmei, Li Sitian, et al. Quantitative modelling of multiphase lithospheric stretching and deep thermal history of some Tertiary rift basins in eastern China[J]. Acta Geologica Sinica (English Edition), 2002, 76(3): 324−330. doi: 10.1111/j.1755-6724.2002.tb00548.x [18] 杨东辉. 莺歌海盆地拗陷期构造变形特征及古构造环境探索[D]. 北京: 中国石油大学(北京), 2019.Yang Donghui. A study on tectonic deformation characteristics and paleotectonic environment of the Yinggehai Basin during depression[D]. Beijing: China University of Petroleum (Beijing), 2019. [19] Hoang B H, Fyhn M B W, Hovikoski J, et al. Cenozoic structural development of the western flank of the Song Hong Basin, Gulf of Tonkin, Vietnam: linking with onshore strike-slip faulting and regional tectonics[J]. Journal of Asian Earth Sciences, 2023, 246: 105581. doi: 10.1016/j.jseaes.2023.105581 [20] 赖冬. 莺歌海盆地底辟构造特征及其油气意义——基于构造物理模拟分析[D]. 成都: 成都理工大学, 2019.Lai Dong. Geometry and kinematics of diapir and its implication in the Yinggehai Basin: insights from analogue experiments[D]. Chengdu: Chengdu University of Technology, 2019. [21] 雷超. 南海北部莺歌海−琼东南盆地新生代构造变形格局及其演化过程分析[D]. 武汉: 中国地质大学, 2012.Lei Chao. Structure and evolution of Yinggehai and Qiongdongnan basins, South China Sea: implications for cenozoic tectonics in Southeast Asia[D]. Wuhan: China University of Geosciences, 2012. [22] Tapponnier P, Peltzer G, Armijo R. On the mechanics of the collision between India and Asia[J]. Geological Society, London, Special Publications, 1986, 19(1): 113−157. doi: 10.1144/GSL.SP.1986.019.01.07 [23] Tapponnier P, Peltzer G, Le Dain A Y, et al. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine[J]. Geology, 1982, 10(12): 611−616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2 [24] 孙向阳, 任建业. 莺歌海盆地形成与演化的动力学机制[J]. 海洋地质与第四纪地质, 2003, 23(4): 45−50.Sun Xiangyang, Ren Jianye. Dynamical mechanism for generation and evolution of Yinggehai Basin, the South China Sea[J]. Marine Geology & Quaternary Geology, 2003, 23(4): 45−50. [25] 向宏发, 万景林, 韩竹军, 等. 红河断裂带大型右旋走滑运动发生时代的地质分析与FT测年[J]. 中国科学 D辑 地球科学, 2006, 36(11): 977−987.Xiang Hongfa, Wan Jinglin, Han Zhujun, et al. Geological analysis and FT dating of the large-scale right-lateral strike-slip movement of the Red River fault zone[J]. Science in China Series D: Earth Sciences, 2006, 36(11): 977−987. [26] Sun Zhen, Zhou Di, Zhong Zhihong, et al. Experimental evidence for the dynamics of the formation of the Yinggehai Basin, NW South China Sea[J]. Tectonophysics, 2003, 372(1/2): 41−58. [27] Leloup P H, Arnaud N, Lacassin R, et al. New constraints on the structure, thermochronology, and timing of the Ailao Shan-Red River shear zone, SE Asia[J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B4): 6683−6732. doi: 10.1029/2000JB900322 [28] 孙桂华, 彭学超, 黄永健. 红河断裂带莺歌海段地质构造特征[J]. 地质学报, 2013, 87(2): 154−166. doi: 10.3969/j.issn.0001-5717.2013.02.002Sun Guihua, Peng Xuechao, Huang Yongjian. Geological structure characteristics of Red River fault zone in the Yinggehai Basin[J]. Acta Geologica Sinica, 2013, 87(2): 154−166. doi: 10.3969/j.issn.0001-5717.2013.02.002 [29] Leloup P H, Harrison T M, Ryerson F J, et al. Structural, petrological and thermal evolution of a Tertiary ductile strike-slip shear zone, Diancang Shan, Yunnan[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B4): 6715−6743. doi: 10.1029/92JB02791 [30] 张连生, 钟大赉. 从红河剪切带走滑运动看东亚大陆新生代构造[J]. 地质科学, 1996, 31(4): 327−341.Zhang Liansheng, Zhong Dalai. The Red River strike-slip shear zone and Cenozoic tectonics of East Asia continent[J]. Scientia Geologica Sinica, 1996, 31(4): 327−341. [31] 黄学猛, 许志琴, 张进江. 哀牢山−红河断裂带新生代构造转换及其动力学机制[J]. 地球学报, 2017, 38(S1): 7−10Huang Xuemeng, Xu Zhiqin, Zhang Jinjiang. Cenozoic tectonic transition and dynamic mechanism of the Ailao Shan–Red River Fault Zone[J]. Acta Geoscientica Sinica, 2017, 38(S1): 7−10. [32] Zhao Zhongxian, Sun Zhen, Wang Zhenfeng, et al. The dynamic mechanism of post-rift accelerated subsidence in Qiongdongnan Basin, northern South China Sea[J]. Marine Geophysical Research, 2013, 34(3): 295−308. [33] Watts A B, Ryan W B F. Flexure of the lithosphere and continental margin basins[J]. Tectonophysics, 1976, 36(1/3): 25−44. [34] 崔涛, 解习农, 任建业, 等. 莺歌海盆地异常裂后沉降的动力学机制[J]. 地球科学–中国地质大学学报, 2008, 33(3): 349−356. doi: 10.3799/dqkx.2008.046Cui Tao, Xie Xinong, Ren Jianye, et al. Dynamic mechanism of anomalous post-rift subsidence in the Yinggehai Basin[J]. Earth Science–Journal of China University of Geosciences, 2008, 33(3): 349−356. doi: 10.3799/dqkx.2008.046 [35] 刘雨晴. 南海周缘新生代盆地结构时空差异及其控制因素[D]. 青岛: 中国石油大学(华东), 2019.Liu Yuqing. Temporal-spatial Basin structure differences and their controlling factors of the Cenozoic Basins around the South China Sea[D]. Qingdao: China University of Petroleum (East China), 2019. [36] Wu Shimin, Qiu Xuelin, Zhou Di, et al. Crustal structure beneath Yinggehai basin and adjacent Hainan Island, and its tectonic implications[J]. Journal of Earth Science, 2009, 20(1): 13−26. doi: 10.1007/s12583-009-0002-7 [37] Vu A T, Wessel Fyhn M B, Xuan C T, et al. Cenozoic tectonic and stratigraphic development of the Central Vietnamese continental margin[J]. Marine and Petroleum Geology, 2017, 86: 386−401. doi: 10.1016/j.marpetgeo.2017.06.001 [38] 雷超, 任建业, 裴健翔, 等. 莺歌海–琼东南盆地结合部记录的红河断裂带向海延伸及其演化过程[J]. 中国科学: 地球科学, 2022, 52(1): 81−97.Lei Chao, Ren Jianye, Pei Jianxiang, et al. Tectonics of the offshore Red River Fault recorded in the junction of the Yinggehai and Qiongdongnan basins[J]. Science China Earth Sciences, 2021, 64(11): 1893−1908. [39] Fyhn M B W, Boldreel L O, Nielsen L H, et al. Carbonate platform growth and demise offshore Central Vietnam: effects of Early Miocene transgression and subsequent onshore uplift[J]. Journal of Asian Earth Sciences, 2013, 76: 152−168. doi: 10.1016/j.jseaes.2013.02.023 [40] Xie Xinong, Müller R D, Li Sitian, et al. Origin of anomalous subsidence along the northern South China Sea margin and its relationship to dynamic topography[J]. Marine and Petroleum Geology, 2006, 23(7): 745−765. doi: 10.1016/j.marpetgeo.2006.03.004 [41] Zhao Zhongxian, Sun Zhen, Wang Zhenfeng, et al. The high resolution sedimentary filling in Qiongdongnan Basin, northern South China Sea[J]. Marine Geology, 2015, 361: 11−24. doi: 10.1016/j.margeo.2015.01.002 [42] 谢玉洪, 张迎朝, 李绪深, 等. 莺歌海盆地高温超压气藏控藏要素与成藏模式[J]. 石油学报, 2012, 33(4): 601−609Xie Yuhong, Zhang Yingchao, Li Xushen, et al. Main controlling factors and formation models of natural gas reservoirs with high-temperature and overpressure in Yinggehai Basin[J]. Acta Petrolei Sinica, 2012, 33(4): 601−609. [43] 谢金有, 祝幼华, 李绪深, 等. 南海北部大陆架莺琼盆地新生代海平面变化[J]. 海相油气地质, 2012, 17(1): 49−58 doi: 10.3969/j.issn.1672-9854.2012.01.008Xie Jinyou, Zhu Youhua, Li Xushen, et al. The cenozoic sea-level changes in Yinggehai-Qiongdongnan Basin, northern South China Sea[J]. Marine Origin Petroleum Geology, 2012, 17(1): 49−58. doi: 10.3969/j.issn.1672-9854.2012.01.008 [44] Miller K G, Browning J V, Schmelz W J, et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records[J]. Science Advances, 2020, 6(20): eaaz1346. doi: 10.1126/sciadv.aaz1346 [45] Sandwell D T, Müller R D, Smith W H F, et al. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure[J]. Science, 2014, 346(6205): 65−67. doi: 10.1126/science.1258213 [46] Ma Ming, Qi Jiafu, Ma Jinshan, et al. Cenozoic subsidence history of the northern South China Sea: examples from the Qiongdongnan and Yinggehai basins[J]. Processes, 2023, 11(3): 956. doi: 10.3390/pr11030956 [47] Tapponnier P, Lacassin R, Leloup P H, et al. The Ailao Shan/Red River metamorphic belt: tertiary left-lateral shear between Indochina and South China[J]. Nature, 1990, 343(6257): 431−437. doi: 10.1038/343431a0 [48] Yan Yi, Carter A, Palk C, et al. Understanding sedimentation in the Song Hong-Yinggehai Basin, South China Sea[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(6): Q06014. [49] Clift P D, Wan Shiming, Blusztajn J. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: a review of competing proxies[J]. Earth-Science Reviews, 2014, 130: 86−102. doi: 10.1016/j.earscirev.2014.01.002 [50] Faccenna C, Becker T W. Shaping mobile belts by small-scale convection[J]. Nature, 2010, 465(7298): 602−605. doi: 10.1038/nature09064 [51] Roger Buck W. Small-scale convection induced by passive rifting: the cause for uplift of rift shoulders[J]. Earth and Planetary Science Letters, 1986, 77(3/4): 362−372. [52] Trung N N, Hong P T, Van Nam B, et al. Moho depth of the northern Vietnam and Gulf of Tonkin from 3D inverse interpretation of gravity anomaly data[J]. Journal of Geophysics and Engineering, 2018, 15(4): 1651−1662. doi: 10.1088/1742-2140/aabf48 [53] 陈梅, 施小斌, 任自强, 等. 南海西北部沉积盆地晚新生代沉降、沉积特征: 对深部异常过程的响应[J]. 地球物理学报, 2019, 62(2): 587−603.Chen Mei, Shi Xiaobin, Ren Ziqiang, et al. Late Cenozoic subsidence and sedimentary features of the basins in the northwestern South China Sea: implications for the development of the deep anomalous progress[J]. Chinese Journal of Geophysics, 2019, 62(2): 587−603. [54] 吴庐山, 邱燕, 解习农, 等. 南海西南部曾母盆地早中新世以来沉降史分析[J]. 中国地质, 2005, 32(3): 370−377. doi: 10.3969/j.issn.1000-3657.2005.03.004Wu Lushan, Qiu Yan, Xie Xinong, et al. Analysis of the subsidence history of the Zengmu Basin in the Southwest South China Sea since the early Miocene[J]. Geology in China, 2005, 32(3): 370−377. doi: 10.3969/j.issn.1000-3657.2005.03.004 [55] 高红芳, 白志琳. 南海中建南盆地构造沉降分析及沉积充填序列[J]. 南海地质研究, 2000(12): 33−43.Gao Hongfang, Bai Zhilin. Modeling and analysis of structure subsidence historic and filling succession of Zhongjiannan Basin[J]. Geological Research of the South China Sea, 2000(12): 33−43. [56] 贺华瑞, 栾锡武, 魏新元, 等. 南昆嵩地区断裂−构造演化特征及其控制因素[J]. 海洋学报, 2022, 44(12): 95−108He Huarui, Luan Xiwu, Wei Xinyuan, et al. Characteristics of fault-tectonic evolution and its controlling factors in the South Kunsong area[J]. Haiyang Xuebao, 2022, 44(12): 95−108. [57] Zhao Dapeng, Toyokuni G, Kurata K. Deep mantle structure and origin of Cenozoic intraplate volcanoes in Indochina, Hainan and South China Sea[J]. Geophysical Journal International, 2021, 225(1): 572−588. doi: 10.1093/gji/ggaa605 [58] Yu Youqiang, Gao S S, Liu K H, et al. Mantle transition zone discontinuities beneath the Indochina Peninsula: implications for slab subduction and mantle upwelling[J]. Geophysical Research Letters, 2017, 44(14): 7159−7167. doi: 10.1002/2017GL073528 [59] Zhao Zhihua, Zhang Guoliang, Wang Shuai, et al. Origin of arc-like intraplate volcanism by melting of lithospheric mantle pyroxenite of the South China continental margin[J]. Lithos, 2021, 396−397: 106236. doi: 10.1016/j.lithos.2021.106236