留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中全新世晚期以来南极宇航员海沉积物的稀土元素和Sr-Nd同位素特征及物源意义

张泳聪 胡良明 孙曦 韩喜彬 龙飞江 武文栋 向波 王逸卓 葛倩 边叶萍

张泳聪,胡良明,孙曦,等. 中全新世晚期以来南极宇航员海沉积物的稀土元素和Sr-Nd同位素特征及物源意义[J]. 海洋学报,2023,45(5):14–26 doi: 10.12284/hyxb2023076
引用本文: 张泳聪,胡良明,孙曦,等. 中全新世晚期以来南极宇航员海沉积物的稀土元素和Sr-Nd同位素特征及物源意义[J]. 海洋学报,2023,45(5):14–26 doi: 10.12284/hyxb2023076
Zhang Yongcong,Hu Liangming,Sun Xi, et al. Rare earth element and Sr-Nd isotopic characteristics of the sediments in Antarctic Cosmonaut Sea and their provenance significances since the late Middle-Holocene[J]. Haiyang Xuebao,2023, 45(5):14–26 doi: 10.12284/hyxb2023076
Citation: Zhang Yongcong,Hu Liangming,Sun Xi, et al. Rare earth element and Sr-Nd isotopic characteristics of the sediments in Antarctic Cosmonaut Sea and their provenance significances since the late Middle-Holocene[J]. Haiyang Xuebao,2023, 45(5):14–26 doi: 10.12284/hyxb2023076

中全新世晚期以来南极宇航员海沉积物的稀土元素和Sr-Nd同位素特征及物源意义

doi: 10.12284/hyxb2023076
基金项目: 国家重点研发计划(2022YFC2905500);自然资源部专项(IRASCC2020−2022);中央级公益性科研院所基本科研业务费专项资金项目(SZ2102);上海交通大学“深蓝计划”基金(SL2002)。
详细信息
    作者简介:

    张泳聪(1997-),男,广东省佛山市人,主要从事海洋沉积研究工作。E-mail: 734694351@qq.com

    通讯作者:

    韩喜彬,男,博士,副研究员,主要从事海洋地质研究工作。E-mail: hanxibin@sio.org.cn

  • 中图分类号: P736.4

Rare earth element and Sr-Nd isotopic characteristics of the sediments in Antarctic Cosmonaut Sea and their provenance significances since the late Middle-Holocene

  • 摘要: 开展海洋沉积物物源研究,可以更好地认识其搬运机理与区域及全球物质循环的过程。通过对南极宇航员海ANT36-C4-05岩芯沉积物的稀土元素及Sr-Nd同位素的测试分析开展了沉积物物源研究,结果显示ANT36-C4-05岩芯沉积物的稀土元素平均含量相对较高,轻、重稀土分馏明显,87Sr/86Sr平均值相对偏高,εNd(0)平均值明显偏负。沉积物的稀土元素及Sr-Nd同位素特征指示中全新世晚期以来,宇航员海沉积物主要来自于东南极普里兹湾周边陆地及恩德比地一带的高级变质岩,这些碎屑物质一方面在冰−海作用下进入宇航员海,其中南极沿岸流与南极陆坡流在其运输过程中发挥了重要作用;同时,其还可能依靠发源于南极内陆高原的下降风完成从源区到研究区的输送过程。物源端元混合模型的结果表明,岩芯沉积物绝大部分(大于70%)来自于普里兹湾地区的变质岩,来自恩德比地物质的贡献相对较少。两个源区对宇航员海沉积物的贡献存在明显差异,这与地区之间冰川、洋流及风力的差异有关:与恩德比地相比,中山站一带的冰川规模较大,运动速度较快,其对基岩的侵蚀与搬运能力更强;发源于普里兹湾底层的南极底层水可能在普里兹湾−宇航员海的物质输送过程中发挥了一定的作用;普里兹湾地区是南极下降风较为强盛的地区之一,它可以将更多的风化碎屑吹向下风向的宇航员海。这些因素综合导致了宇航员海ANT36-C4-05岩芯沉积物主要来自于普里兹湾的特征。
  • 图  1  ANT36-C4-05站位(a)、区域环流(b)及下降风(c)[26]示意图

    恩德比地样品区引自文献[27-31];普里兹湾样品区引自文献[32];中山站引自文献[32-33];罗斯海样品区引自文献[33-35];南极半岛东北部海域样品区引自文献[36];Vostok冰芯引自文献[37-38];Dome C冰芯引自文献[38-39];Taylor冰川引自文献[40];西南极火成岩引自文献[41- 42];横贯南极山脉(Transantarctic Mountain, TAM)粉尘样品引自文献[43]

    Fig.  1  Sketch map of Station ANT36-C4-05 (a), the regional current system (b) and the katabatic winds (c) [26]

    Enderby Land sample area cited from references [27-31]; Prydz Bay sample area cited from reference [32]; Zhongshan Station cited from references [32-33]; Ross Sea sample area cited from references [33-35]; Antarctic Peninsula northeasten sea sample area cited from reference [36];Vostok Ice Core cited from references [37-38];Dome C Ice Core cited from references [38-39];Taylor Glacial cited from reference [40]; West Antarctic volcanoes cited from references [41-42]; Transantarctic Mountain (TAM) dust samples cited from reference [43]

    图  2  沉积物与UCC[54]、南极地区海洋沉积物[32, 34, 36]及岩石[27, 32-33, 35-36]稀土元素(REE)标准化配分模式对比

    Fig.  2  The comparison of the rare earth element (REE) standardized distribution model between the sediment and the UCC[54], marine sediments[32, 34, 36], and rocks[27, 32-33, 35-36] in the Antarctic

    图  3  沉积物与南极地区海洋沉积物[32, 34, 36]及岩石[27, 32-33, 35-36] 稀土元素(REE)特征对比

    Fig.  3  The comparison of the rare earth element (REE) characteristics between the sediment and marine sediments[32, 34, 36], rocks[27, 32-33, 35-36] in the Antarctic

    图  4  沉积物与南极地区粉尘物质[28-31, 33, 37-43]εNd(0)-87Sr/86Sr特征对比

    Fig.  4  The comparison of the εNd(0) - 87Sr/86Sr between the sediment and dust materials in the Antarctic[28-31, 33, 37-43]

    图  5  物源端元模拟结果的稀土元素(REE)标准化配分模式对比

    Fig.  5  The comparison of the rare earth element (REE) standardized distribution models between the simulation results for the provenance end member mixing model and the original results of the sample

    表  1  沉积物稀土元素(REE)指标统计学特征

    Tab.  1  Statistical characteristics of rare earth element (REE) proxies in the sediment

    站位指标ΣLREEΣHREEΣREEΣLREE/ΣHREEδCe
    ANT36-C4-05最小值186.06×10−614.29×10−6200.06×10−612.671.06
    最大值210.41×10−616.15×10−6225.88×10−613.331.08
    平均值201.27×10−615.52×10−6216.47×10−612.971.07
    标准差5.81×10−60.46×10−66.21×10−60.170.01
    变异系数0.030.030.030.010.01
    注:δCe=CeN/(La×Pr)N1/2,N表示数据经球粒陨石REE含量[49]标准化处理;LREE表示轻稀土元素,HREE表示重稀土元素。
    下载: 导出CSV

    表  2  沉积物Sr-Nd同位素指标统计学特征

    Tab.  2  Statistical characteristics of Sr-Nd isotopic proxies in the sediment

    站位指标87Sr/86Sr143Nd/144NdεNd(0)
    ANT36-C4-05最小值0.737 60.511 5−21.76
    最大值0.739 90.511 6−20.67
    平均值0.738 40.511 55−21.26
    标准差0.000 6<0.000 10.27
    变异系数0.000 8<0.000 1−0.01
    下载: 导出CSV

    表  3  沉积物稀土元素的富集因子(EF)值统计

    Tab.  3  Enrichment factors (EF) of the rare earth element in the sediment

    LaCePrNdSmEuGdTbDyHoErTmYbLu
    EF2.1072.1471.6281.7661.3821.3511.2261.1161.7520.8581.0150.9130.9370.840
    下载: 导出CSV

    表  4  沉积物物源端元计算结果

    Tab.  4  Results of the provenance end member mixing model of the sediment

    Sr同位素贡献率/%Nd同位素贡献率/%
    恩德比地2917
    中山站一带7183
    下载: 导出CSV
  • [1] Vermeesch P, Resentini A, Garzanti E. An R package for statistical provenance analysis[J]. Sedimentary Geology, 2016, 336: 14−25. doi: 10.1016/j.sedgeo.2016.01.009
    [2] Weltje G J, Von Eynatten H. Quantitative provenance analysis of sediments: review and outlook[J]. Sedimentary Geology, 2004, 171(1/4): 1−11.
    [3] Goldstein S L, Hemming S R. Long-lived isotopic tracers in oceanography, paleoceanography, and ice-sheet dynamics[M]//Holland H D, Turekian K K, Elderfield H. Treatise on Geochemistry. Oxford: Elsevier-Pergamon, 2003: 453–489.
    [4] Diekmann B. Sedimentary patterns in the late Quaternary Southern Ocean[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2007, 54(21/22): 2350−2366.
    [5] Sudarchikova N, Mikolajewicz U, Timmreck C, et al. Modelling of mineral dust for interglacial and glacial climate conditions with a focus on Antarctica[J]. Climate of the Past, 2015, 11(5): 765−779. doi: 10.5194/cp-11-765-2015
    [6] Roy M, Van De Flierdt T, Hemming S R, et al. 40Ar/39Ar ages of hornblende grains and bulk Sm/Nd isotopes of circum-Antarctic glacio-marine sediments: implications for sediment provenance in the Southern Ocean[J]. Chemical Geology, 2007, 244(3/4): 507−519.
    [7] Pereira P S, Van De Flierdt T, Hemming S R, et al. Geochemical fingerprints of glacially eroded bedrock from West Antarctica: detrital thermochronology, radiogenic isotope systematics and trace element geochemistry in Late Holocene glacial-marine sediments[J]. Earth-Science Reviews, 2018, 182: 204−232. doi: 10.1016/j.earscirev.2018.04.011
    [8] Sheraton J W, Black L P, McCulloch M T. Regional geochemical and isotopic characteristics of high-grade metamorphics of the Prydz Bay area: the extent of Proterozoic reworking of Qrchaean continental crust in East Antarctica[J]. Precambrian Research, 1984, 26(2): 169−198. doi: 10.1016/0301-9268(84)90043-3
    [9] Anand S S, Rahaman W, Lathika N, et al. Trace elements and Sr, Nd isotope compositions of surface sediments in the Indian Ocean: an evaluation of sources and processes for sediment transport and dispersal[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(6): 3090−3112. doi: 10.1029/2019GC008332
    [10] Pierce E L, Williams T, Van De Flierdt T, et al. Characterizing the sediment provenance of East Antarctica’s weak underbelly: the Aurora and Wilkes sub-glacial basins[J]. Paleoceanography, 2011, 26(4): PA4217.
    [11] Kuvaas B, Kristoffersen Y, Guseva J, et al. Input of glaciomarine sediments along the East Antarctic continental margin; depositional processes on the Cosmonaut Sea continental slope and rise and a regional acoustic stratigraphic correlation from 40°W to 80°E[J]. Marine Geophysical Researches, 2004, 25(3/4): 247−263.
    [12] Solli K, Kuvaas B, Kristoffersen Y, et al. The Cosmonaut Sea Wedge[J]. Marine Geophysical Researches, 2008, 29(1): 51−69. doi: 10.1007/s11001-008-9045-x
    [13] 胡栟铫, 龙飞江, 韩喜彬, 等. 中全新世以来南极宇航员海的古生产力演变[J]. 地学前缘, 2022, 29(4): 113−122.

    Hu Bingyao, Long Feijiang, Han Xibin, et al. The evolution of paleoproductivity since the Middle Holocene in the Cosmonaut Sea, Antarctic[J]. Earth Science Frontiers, 2022, 29(4): 113−122.
    [14] 毛光周, 刘池洋. 地球化学在物源及沉积背景分析中的应用[J]. 地球科学与环境学报, 2011, 33(4): 337−348. doi: 10.3969/j.issn.1672-6561.2011.04.002

    Mao Guangzhou, Liu Chiyang. Application of geochemistry in provenance and depositional setting analysis[J]. Journal of Earth Sciences and Environment, 2011, 33(4): 337−348. doi: 10.3969/j.issn.1672-6561.2011.04.002
    [15] 王轲, 翟世奎. 沉积物源判别的地球化学方法[J]. 海洋科学, 2020, 44(12): 132−143.

    Wang Ke, Zhai Shikui. Geochemical methods for identification of sedimentary provenance[J]. Marine Sciences, 2020, 44(12): 132−143.
    [16] Mills R A, Teagle D A H, Tivey M K. Fluid mixing and anhydrite precipitation within The TAG Mound[J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1998, 158: 119−127.
    [17] Stagg H M J, Colwel J B, Direen N G, et al. Geology of the continental margin of Enderby and Mac. Robertson Lands, East Antarctica: insights from a regional data set[J]. Marine Geophysical Researches, 2004, 25(3/4): 183−219.
    [18] Meijers A J S, Klocker A, Bindoff N L, et al. The circulation and water masses of the Antarctic shelf and continental slope between 30 and 80°E[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2010, 57(9/10): 723−737.
    [19] Hunt B P V, Pakhomov E A, Trotsenko B G. The macrozooplankton of the Cosmonaut Sea, east Antarctica (30°E−60°E), 1987−1990[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2007, 54(7): 1042−1069. doi: 10.1016/j.dsr.2007.04.002
    [20] Williams G D, Nicol S, Aoki S, et al. Surface oceanography of BROKE-West, along the Antarctic margin of the south-west Indian Ocean (30−80°E)[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2010, 57(9/10): 738−757.
    [21] Thompson A F, Stewart A L, Spence P, et al. The Antarctic Slope Current in a changing climate[J]. Reviews of Geophysics, 2018, 56(4): 741−770. doi: 10.1029/2018RG000624
    [22] White D A, Fink D. Late Quaternary glacial history constrains glacio-isostatic rebound in Enderby Land, East Antarctica[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(3): 401−413. doi: 10.1002/2013JF002870
    [23] Comiso J C, Gordon A L. Recurring polynyas over the Cosmonaut Sea and the Maud Rise[J]. Journal of Geophysical Research: Oceans, 1987, 92(C3): 2819−2833. doi: 10.1029/JC092iC03p02819
    [24] Comiso J C. Large-scale characteristics and variability of the global sea ice cover[M]//Thomas D N, Diekmann G S. Sea Ice: an Introduction to its Physics, Chemistry, Biology and Geology. Oxford: Blackwell, 2003: 112–142.
    [25] Vihma T, Tuovinen E, Savijärvi H. Interaction of katabatic winds and near-surface temperatures in the Antarctic[J]. Journal of Geophysical Research: Atmospheres, 2011, 116: D21119.
    [26] 孙启振, 张占海, 付敏, 等. 南极Dome A至普里兹湾沿岸下降风特征[J]. 海洋学报, 2021, 43(7): 125−137.

    Sun Qizhen, Zhang Zhanhai, Fu Min, et al. Characteristics of katabatic winds from Dome A to the coast of Prydz Bay, Antarctica[J]. Haiyang Xuebao, 2021, 43(7): 125−137.
    [27] Suzuki S, Hokada T, Ishikawa M, et al. Geochemical study of granulites from Mt. Riiser-Larsen, Enderby Land, East Antarctica: implication for protoliths of the Archaean Napier Complex[J]. Polar Geoscience, 1999, 12: 101−125.
    [28] DePaolo D J, Manton W I, Grew E S, et al. Sm-Nd, Rb-Sr and U-Th-Pb systematics of granulite facies rocks from Fyfe Hills, Enderby Land, Antarctica[J]. Nature, 1982, 198(5875): 614−618.
    [29] McCulloch M T, Black L P. Sm-Nd isotopic systematics of Enderby Land granulites and evidence for the redistribution of Sm and Nd during metamorphism[J]. Earth and Planetary Science Letters, 1984, 71(1): 46−58. doi: 10.1016/0012-821X(84)90051-7
    [30] Black L P, McCulloch M T. Evidence for isotopic equilibration of Sm-Nd whole-rock systems in early Archaean crust of Enderby Land, Antarctica[J]. Earth and Planetary Science Letters, 1987, 82(1/2): 15−24.
    [31] Miyamoto T, Yoshimura Y, Sato K, et al. Occurrences of metamorphosed ultramafic rock and associating rocks in Howard Hills, Enderby Land, East Antarctica: evidence of partial melting from geochemical and isotopic characteristics[J]. Polar Geoscience, 2004, 17: 88−111.
    [32] 李国刚, 季有俊, 李云海, 等. 南极普里兹湾沉积物稀土元素地球化学特征[J]. 极地研究, 2017, 29(1): 23−32. doi: 10.13679/j.jdyj.2017.1.023

    Li Guogang, Ji Youjun, Li Yunhai, et al. Geochemical characteristics of rare earth elements in the sediments of Prydz Bay, Antarctica[J]. Chinese Journal of Polar Research, 2017, 29(1): 23−32. doi: 10.13679/j.jdyj.2017.1.023
    [33] Shao Hebin, He Jianfeng, Wu Li, et al. Elemental and Sr-Nd isotopic compositions of surface clay-size sediments in the front end of major ice shelves around Antarctica and indications for provenance[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2022, 195: 105011. doi: 10.1016/j.dsr2.2021.105011
    [34] 修淳, 陈新玺, 周勐佳, 等. 南极罗斯海R11柱样晚更新世晚期以来稀土元素地球化学特征[J]. 海洋地质前沿, 2017, 33(5): 1−8. doi: 10.16028/j.1009-2722.2017.05001

    Xiu Chun, Chen Xinxi, Zhou Mengjia, et al. REE geochemical characteristics of Core R11 in the Ross Sea, Antarctic[J]. Marine Geology Frontiers, 2017, 33(5): 1−8. doi: 10.16028/j.1009-2722.2017.05001
    [35] 石林, 解广轰, 李华梅. 南极泰勒谷及罗斯岛地区火山岩微量元素地球化学[J]. 地球化学, 1998, 27(3): 294−303. doi: 10.3321/j.issn:0379-1726.1998.03.011

    Shi Lin, Xie Guanghong, Li Huamei. Trace element geochemistry of the volcanic rocks from the Taylor Valley and Ross Islands, Antarctica[J]. Geochimica, 1998, 27(3): 294−303. doi: 10.3321/j.issn:0379-1726.1998.03.011
    [36] 陈志华, 黄元辉, 唐正, 等. 南极半岛东北部海域表层沉积物稀土元素特征及物源指示意义[J]. 海洋地质与第四纪地质, 2015, 35(3): 145−155.

    Chen Zhihua, Huang Yuanhui, Tang Zheng, et al. Rare earth elements in the offshore surface sediments of the northeastern Antarctic Peninsula and their implications for provenance[J]. Marine Geology & Quaternary Geology, 2015, 35(3): 145−155.
    [37] Basile I, Grousset F E, Revel M, et al. Patagonian origin of glacial dust deposited in East Antarctica (Vostok and Dome C) during glacial stages 2, 4 and 6[J]. Earth and Planetary Science Letters, 1997, 146(3/4): 573−589.
    [38] Delmonte B, Baroni C, Andersson P S, et al. Modern and Holocene aeolian dust variability from Talos Dome (northern Victoria Land) to the interior of the Antarctic ice sheet[J]. Quaternary Science Reviews, 2013, 64: 76−89. doi: 10.1016/j.quascirev.2012.11.033
    [39] Grousset F E, Biscaye P E, Revel M, et al. Antarctic (Dome C) ice-core dust at 18 k. y. B. P. : isotopic constraints on origins[J]. Earth and Planetary Science Letters, 1992, 111(1): 175−182. doi: 10.1016/0012-821X(92)90177-W
    [40] Aarons S M, Aciego S M, Arendt C A, et al. Dust composition changes from Taylor Glacier (East Antarctica) during the last glacial-interglacial transition: a multi-proxy approach[J]. Quaternary Science Reviews, 2017, 162: 60−71. doi: 10.1016/j.quascirev.2017.03.011
    [41] Panter K S, Kyle P R, Smellie J L. Petrogenesis of a phonolite-trachyte succession at Mount Sidley, Marie Byrd Land, Antarctica[J]. Journal of Petrology, 1997, 38(9): 1225−1253. doi: 10.1093/petroj/38.9.1225
    [42] Panter K S, Hart S R, Kyle P, et al. Geochemistry of Late Cenozoic basalts from the Crary Mountains: characterization of mantle sources in Marie Byrd Land, Antarctica[J]. Chemical Geology, 2000, 165(3/4): 215−241.
    [43] Farmer G L, Licht K J. Generation and fate of glacial sediments in the central Transantarctic Mountains based on radiogenic isotopes and implications for reconstructing past ice dynamics[J]. Quaternary Science Reviews, 2016, 150: 98−109. doi: 10.1016/j.quascirev.2016.08.002
    [44] Sutherland R A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii[J]. Environmental Geology, 2000, 39(6): 611−627. doi: 10.1007/s002540050473
    [45] Taylor S R. Abundance of chemical elements in the continental crust: a new table[J]. Geochimica et Cosmochimica Acta, 1964, 28(8): 1273−1285. doi: 10.1016/0016-7037(64)90129-2
    [46] Steiger R H, Jäger E. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology[J]. Earth and Planetary Science Letters, 1977, 36(3): 359−362. doi: 10.1016/0012-821X(77)90060-7
    [47] Tanaka T, Togashi S, Kamioka H, et al. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium[J]. Chemical Geology, 2000, 168(3/4): 279−281.
    [48] Jacobsen S B, Wasserburg G J. Sm-Nd isotopic evolution of chondrites[J]. Earth and Planetary Science Letters, 1980, 50(1): 139−155. doi: 10.1016/0012-821X(80)90125-9
    [49] Boynton W V. Cosmochemistry of the rare earth elements: meteorite studies[M]//Henderson P. Rare Earth Element Geochemistry: Development in Geochemistry. Amsterdam: Elsevier, 1984: 63–114.
    [50] 蓝先洪, 申顺喜. 南黄海中部沉积岩心的稀土元素地球化学特征[J]. 海洋通报, 2002, 21(5): 46−53. doi: 10.3969/j.issn.1001-6392.2002.05.007

    Lan Xianhong, Shen Shunxi. Geochemical characteristics of rare earth elements of sediment cores from the Central South Yellow Sea[J]. Marine Science Bulletin, 2002, 21(5): 46−53. doi: 10.3969/j.issn.1001-6392.2002.05.007
    [51] Holser W T. Evaluation of the application of rare-earth elements to paleoceanography[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 132(1/4): 309−323.
    [52] 窦衍光, 李军, 李炎. 北部湾东部海域表层沉积物稀土元素组成及物源指示意义[J]. 地球化学, 2012, 41(2): 147−157. doi: 10.3969/j.issn.0379-1726.2012.02.006

    Dou Yanguang, Li Jun, Li Yan. Rare earth element compositions and provenance implication of surface sediments in the eastern Beibu Gulf[J]. Geochimica, 2012, 41(2): 147−157. doi: 10.3969/j.issn.0379-1726.2012.02.006
    [53] 张宏飞, 高山. 地球化学[M]. 北京: 地质出版社, 2012: 134–135.

    Zhang Hongfei, Gao Shan. Geochemistry[M]. Beijing: Geology Press, 2012: 134–135.
    [54] Taylor S R, McLennan S M. The continental crust: its composition and evolution[J]. The Journal of Geology, 1985, 94(4): 57−72.
    [55] Shapiro N M, Ritzwoller M H. Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica[J]. Earth and Planetary Science Letters, 2004, 223(1/2): 213−224.
    [56] Antoniades D, Giralt S, Geyer A, et al. The timing and widespread effects of the largest Holocene volcanic eruption in Antarctica[J]. Scientific Reports, 2018, 8(1): 17279. doi: 10.1038/s41598-018-35460-x
    [57] Tingey R J. The regional geology of Archaean and Proterozoic rocks in Antarctica[M]//Tingey R J. The Geology of Antarctica. Oxford: Clarendon Press, 1991: 1–73.
    [58] Mikhalsky E V, Sheraton J W, Laiba A A, et al. Geology of the Prince Charles Mountains[M]. Canberra: AGSO Geoscience Australia Bulletin, 2001.
    [59] Sandiford M, Wilson C J L. The origin of Archaean Gneisses in the Fyfe Hills region, Enderby Land; field occurrence, petrography and geochemistry[J]. Precambrian Research, 1986, 31(1): 37−68. doi: 10.1016/0301-9268(86)90064-1
    [60] Hambrey M J, Mckelvey B. Neogene fjordal sedimentation on the western margin of the Lambert Graben, East Antarctica[J]. Sedimentology, 2000, 47(3): 577−607. doi: 10.1046/j.1365-3091.2000.00308.x
    [61] Shipboard Scientific Party. Leg 188 summary: Prydz Bay—Cooperation Sea, Antarctica[R]//O'Brien P E, Cooper A K, Richter C, et al. Proceedings of the Ocean Drilling Program, Initial Reports. Texas: College Station TX (Ocean Drilling Program), 2001, 188: 1−65.
    [62] Masson V, Vimeux F, Jouzel J, et al. Holocene climate variability in Antarctica based on 11 ice-core isotopic records[J]. Quaternary Research, 2000, 54(3): 348−358. doi: 10.1006/qres.2000.2172
    [63] Ingólfsson Ó. Quaternary glacial and climate history of Antarctica[J]. Developments in Quaternary Sciences, 2004, 2: 3−43.
    [64] Wu Li, Wilson D J, Wang Rujian, et al. Late Quaternary dynamics of the Lambert Glacier-Amery Ice Shelf system, East Antarctica[J]. Quaternary Science Reviews, 2021, 252: 106738. doi: 10.1016/j.quascirev.2020.106738
    [65] Neelov I A, Danilov A I, Klepikov A V, et al. New diagnostic calculations of the Southern Ocean[J]. Antarctica, 1998, 34: 45−51.
    [66] Stewart A L, Klocker A, Menemenlis D. Acceleration and overturning of the Antarctic Slope Current by winds, eddies, and tides[J]. Journal of Physical Oceanography, 2019, 49(8): 2043−2074. doi: 10.1175/JPO-D-18-0221.1
    [67] Koffman B G, Goldstein S L, Winckler G, et al. Late Holocene dust provenance at Siple Dome, Antarctica[J]. Quaternary Science Reviews, 2021, 274: 107271. doi: 10.1016/j.quascirev.2021.107271
    [68] Lamy F, Gersonde R, Winckler G, et al. Increased dust deposition in the Pacific Southern Ocean during glacial periods[J]. Science, 2014, 343(6169): 403−407. doi: 10.1126/science.1245424
    [69] Grew E S. Osumilite in the sapphirine-quartz terrane of Enderby Land, Antarctica: implications for osumilite petrogenesis in the granulite facies[J]. American Mineralogist, 1982, 67(7/8): 762−787.
    [70] Jamieson S S R, Sugden D E, Hulton N R J. The evolution of the subglacial landscape of Antarctica[J]. Earth and Planetary Science Letters, 2010, 293(1/2): 1−27.
    [71] Golledge N R, Levy R H, McKay R M, et al. Glaciology and geological signature of the Last Glacial Maximum Antarctic ice sheet[J]. Quaternary Science Reviews, 2013, 78: 225−247. doi: 10.1016/j.quascirev.2013.08.011
    [72] Van den Broeke M R, Van Lipzig N P M. Factors controlling the near-surface wind field in Antarctica[J]. Monthly Weather Review, 2003, 131(4): 733−743. doi: 10.1175/1520-0493(2003)131<0733:FCTNSW>2.0.CO;2
    [73] Sanz Rodrigo J, Buchlin J M, Van Beeck J, et al. Evaluation of the Antarctic surface wind climate from ERA reanalyses and RACMO2/ANT simulations based on automatic weather stations[J]. Climate Dynamics, 2013, 40(1): 353−376.
    [74] Wen Jiahong, Jezek K C, Monaghan A J, et al. Accumulation variability and mass budgets of the Lambert Glacier-Amery Ice Shelf system, East Antarctica, at high elevations[J]. Annals of Glaciology, 2006, 43: 351−360. doi: 10.3189/172756406781812249
    [75] Yu J, Liu H, Jezek K C, et al. Analysis of velocity field, mass balance, and basal melt of the Lambert Glacier-Amery Ice Shelf system by incorporating Radarsat SAR interferometry and ICESat laser altimetry measurements[J]. Journal of Geophysical Research: Solid Earth, 2010, 115: B11102. doi: 10.1029/2010JB007456
    [76] Rignot E. Changes in ice dynamics and mass balance of the Antarctic ice sheet[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 364(1844): 1637−1655. doi: 10.1098/rsta.2006.1793
    [77] 陈红霞, 林丽娜, 史久新. 南极普里兹湾及其邻近海域水团研究[J]. 海洋学报, 2014, 36(7): 1−8.

    Chen Hongxia, Lin Lina, Shi Jiuxin. Study on water masses in Prydz Bay and its adjacent sea area[J]. Haiyang Xuebao, 2014, 36(7): 1−8.
    [78] 蒲书箴, 胡筱敏, 董兆乾, 等. 普里兹湾附近绕极深层水和底层水及其运动特征[J]. 海洋学报, 2002, 24(3): 1−8.

    Pu Shuzhen, Hu Xiaomin, Dong Zhaoqian, et al. Features of Circumpolar Deep Water, Antarctic Bottom Water and their movement near the Prydz Bay[J]. Haiyang Xuebao, 2002, 24(3): 1−8.
    [79] Ohshima K I, Fukamachi Y, Williams G D, et al. Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley Polynya[J]. Nature Geoscience, 2013, 6(3): 235−240. doi: 10.1038/ngeo1738
    [80] Aoki S, Katsumata K, Hamaguchi M, et al. Freshening of Antarctic Bottom Water off Cape Darnley, East Antarctica[J]. Journal of Geophysical Research: Oceans, 2020, 125(8): e2020JC016374.
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  443
  • HTML全文浏览量:  228
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-22
  • 修回日期:  2022-10-17
  • 网络出版日期:  2023-06-13
  • 刊出日期:  2023-05-01

目录

    /

    返回文章
    返回