留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可控深水破碎波的实验室生成方法研究

薛庆仁 梁书秀 许媛媛 孙昭晨

薛庆仁,梁书秀,许媛媛,等. 可控深水破碎波的实验室生成方法研究[J]. 海洋学报,2023,45(4):46–56 doi: 10.12284/hyxb2023063
引用本文: 薛庆仁,梁书秀,许媛媛,等. 可控深水破碎波的实验室生成方法研究[J]. 海洋学报,2023,45(4):46–56 doi: 10.12284/hyxb2023063
Xue Qingren,Liang Shuxiu,Xu Yuanyuan, et al. Research on laboratory generation method of controllable deep water breaking waves[J]. Haiyang Xuebao,2023, 45(4):46–56 doi: 10.12284/hyxb2023063
Citation: Xue Qingren,Liang Shuxiu,Xu Yuanyuan, et al. Research on laboratory generation method of controllable deep water breaking waves[J]. Haiyang Xuebao,2023, 45(4):46–56 doi: 10.12284/hyxb2023063

可控深水破碎波的实验室生成方法研究

doi: 10.12284/hyxb2023063
基金项目: 国家自然科学基金(51779038);国家重点研发计划—辽东湾污染防治与生态环境修复关键技术研究(2019YFC1407700)。
详细信息
    作者简介:

    薛庆仁(1993-),男,辽宁省庄河市人,博士生,主要从事海洋环境动力学研究。E-mail: xqrxqr@foxmail.com

    通讯作者:

    梁书秀,女,教授,主要从事近海环境关键过程以及影响因素的模拟和实测研究。E-mail: sxliang@dlut.edu.cn

  • 中图分类号: P731.22;TV139.2+5

Research on laboratory generation method of controllable deep water breaking waves

  • 摘要: 实验室一般采用波浪聚焦方法生成深水破碎波,通过各组分波浪的波幅叠加生成一个波高显著增大的大波,使其波陡超过极限波陡发生破碎。利用该方法生成深水破碎波浪的破碎次数通常并不唯一,导致波浪破碎后的流场特征不明显;造波参数不易于选取导致研究工况的设置难度大,直接影响深水破碎精细化实验的效果和效率。本文采用聚焦波理论计算波面,并利用上跨零点法定义的波高和波长计算理论波陡,结合物理模型实验统计波浪沿程破碎次数与剧烈程度,研究以JONSWAP谱为造波输入谱型时,聚焦波幅、谱峰频率、频宽等造波输入参数对于波浪破碎情况的影响,从而建立深水波浪破碎次数与造波输入参数之间的近似定量关系,为实验造波参数的选取提供参考,提高实验效率。
  • 图  1  工况Li_01理论波面时空分布

    Fig.  1  Spatial and temporal distribution of theoretical wave surface of case Li_01

    图  2  工况Li_01理论波陡时空分布

    Fig.  2  Spatial and temporal distribution of theoretical wave steepness of case Li_01

    图  3  实验水槽及浪高仪布置示意图

    Fig.  3  The diagram of water tank and arrangement of wave gauges

    图  4  工况Li_01实测波面与理论计算波面对比

    Fig.  4  Comparison of wave surface between measurement and theory of case Li_01

    图  5  工况Li_01实测波谱与理论波谱对比

    Fig.  5  Comparison of wave spectrum between measurement and theory of case Li_01

    图  6  工况Li_01、Li_04、Li_07和Li_10波浪沿程理论最大波陡

    Fig.  6  Theoretical maximum wave steepness along the tank of case Li_01, Li_04, Li_07 and Li_10

    图  7  无量纲化聚焦波幅Ak对波浪全程理论最大波陡的影响

    Fig.  7  The effect of the dimensionless focusing-wave-amplitiude Ak on the theoretical maximum wave steepness

    图  8  谱峰频率$ {f_p} $对系数$ \alpha $的影响

    Fig.  8  The effect of spectrum peak frequency $ {f_p} $ on coefficient $ \alpha $

    图  9  波浪沿程理论最大波陡对破碎次数的影响

    Fig.  9  The effect of maximum wave steepness in theory on the wave breaking times along the tank

    图  10  工况Li_11、Li_13、Li_15、Li_17和Li_19波浪沿程理论最大波陡

    Fig.  10  Theoretical maximum wave steepness along the tank of case Li_11, Li_13, Li_15, Li_17 and Li_19

    图  11  谱峰频率fp引起的fpf变化对波浪全程理论最大波陡的影响

    Fig.  11  The effect of fpf change induced by the spectrum peak frequency fp on the maximum wave steepness in theory

    图  12  谱峰频率fp引起的Smax变化对波浪全程破碎次数的影响

    Fig.  12  The effect of Smax change induced by the spectrum peak frequency fp on the wave breaking times along the tank

    图  13  频宽∆f引起的fp/∆f变化对波浪全程理论最大波陡的影响

    Fig.  13  The effect of fp/∆f change induced by the frequency bandwidth ∆f on the maximum wave steepness in theory

    图  14  频宽$ \Delta f $引起的$ f_p/\Delta f $变化对波浪全程破碎次数的影响

    Fig.  14  The effect of $f_p/\Delta f $ change induced by the frequency bandwidth $ \Delta f $ on the wave breaking times along the tank

    图  15  波浪仅发生一次破碎时,聚焦波幅A实测值与计算值对比

    Fig.  15  Comparison of focusing wave amplitude A between measurement and theory under the condition of single break

    图  16  利用计算造波参数作参考值生成的仅一次破碎波浪入水过程(卷破)

    Fig.  16  The process of single break entrying into water with input calculated parameters (plunging)

    表  1  实验工况设置

    Tab.  1  Experiment cases setting

    工况聚焦波幅A/m峰频fp/Hz最小截止频率
    F1/Hz
    最大截止频率
    FN/Hz
    聚焦位置xb/m聚焦时间tb/s
    Li_01−Li_100.08,
    0.10~0.13, △=0.01 m,
    0.15,
    0.17~0.20, △=0.01 m
    0.910.601.802050
    Li_11−Li_280.120.70~0.90, △=0.05 Hz,
    0.95~1.35, △=0.05 Hz,
    1.40~1.70, △=0.1 Hz
    0.601.802050
    Li_29−Li_350.120.910.50~0.55, △=0.05 Hz
    0.65~0.85, △=0.05 Hz
    1.802050
    Li_36−Li_500.120.910.601.00~1.35, △=0.05 Hz,
    1.40~2.00, △=0.1 Hz
    2050
    注:“△”表示对应参数取值步长。
    下载: 导出CSV

    表  2  浪高仪编号与位置

    Tab.  2  Wave gauges number and locations

    浪高仪编号L1L2L3L4L5L6L7L8L9
    安装位置/m8.914.51718.52021.5233032.5
    下载: 导出CSV

    表  3  各实验工况实际破碎次数统计

    Tab.  3  Actual breaking times statistics of each case

    工况合计参数变化参数值工况合计参数变化参数值
    Li_011102聚焦波幅A递增(m)0.08Li_26沿程连续破碎破碎次数无法统计峰频fp递增(Hz)1.50
    Li_0210120.10Li_271.60
    Li_0310120.11Li_281.70
    Li_0411130.12Li_291113最小截止频率 F1递增(Hz)0.50
    Li_0511130.13Li_3011130.55
    Li_0631040.15Li_0411130.60
    Li_0741490.17Li_3111130.65
    Li_0841270.18Li_3211130.70
    Li_0951280.19Li_3321140.75
    Li_1051~2410~110.20Li_3431040.80
    Li_110112峰频fp递增(Hz)0.70Li_3541050.85
    Li_1201120.75Li_363126最大截止频率FN递增(Hz)1.00
    Li_1301010.80Li_37402~36~71.05
    Li_1411020.85Li_38514~510~111.10
    Li_151~2102~30.90Li_39505~610~111.15
    Li_0411130.91Li_40505101.20
    Li_1621030.95Li_4150491.25
    Li_1741051.00Li_4240481.30
    Li_1861181.05Li_4341381.35
    Li_1960391.10Li_4441161.40
    Li_2062>6>141.15Li_4531151.50
    Li_21>72>5~6>151.20Li_4621141.60
    Li_22>91>5>151.25Li_4711131.70
    Li_23>101>5>161.30Li_0411131.80
    Li_24>111>9>211.35Li_4911131.90
    Li_25沿程连续破碎破碎次数无法统计1.40Li_5011022.00
    下载: 导出CSV
  • [1] Terray E A, Donelan M A, Agrawal Y C, et al. Estimates of kinetic energy dissipation under breaking waves[J]. Journal of Physical Oceanography, 1996, 26(5): 792−807. doi: 10.1175/1520-0485(1996)026<0792:EOKEDU>2.0.CO;2
    [2] Lueck R G, Huang D, Newman D, et al. Turbulence measurement with a moored instrument[J]. Journal of Atmospheric and Oceanic Technology, 1997, 14(1): 143−161. doi: 10.1175/1520-0426(1997)014<0143:TMWAMI>2.0.CO;2
    [3] Ticona Rollano F, Brown A, Ellenson A, et al. Breaking waves in deep water: measurements and modeling of energy dissipation[J]. Ocean Dynamics, 2019, 69(10): 1165−1179. doi: 10.1007/s10236-019-01301-2
    [4] Callaghan A H, Deane G B, Stokes M D, et al. Observed variation in the decay time of oceanic whitecap foam[J]. Journal of Geophysical Research: Oceans, 2012, 117(C9): C09015.
    [5] Sutherland G, Ward B, Christensen K H. Wave-turbulence scaling in the ocean mixed layer[J]. Ocean Science, 2013, 9(4): 597−608. doi: 10.5194/os-9-597-2013
    [6] Sullivan P P, McWilliams J C, Melville W K. Surface gravity wave effects in the oceanic boundary layer: large-eddy simulation with vortex force and stochastic breakers[J]. Journal of Fluid Mechanics, 2007, 593: 405−452. doi: 10.1017/S002211200700897X
    [7] 詹杰民, 李熠华. 波浪破碎的一种混合湍流模拟模式[J]. 力学学报, 2019, 51(6): 1712−1719. doi: 10.6052/0459-1879-19-321

    Zhan Jiemin, Li Yihua. A hybrid turbulence model for wave breaking simulation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1712−1719. doi: 10.6052/0459-1879-19-321
    [8] Kudryavtsev V, Shrira V, Dulov V, et al. On the vertical structure of wind-driven sea currents[J]. Journal of Physical Oceanography, 2008, 38(10): 2121−2144. doi: 10.1175/2008JPO3883.1
    [9] Lamarre E, Melville W K. Air entrainment and dissipation in breaking waves[J]. Nature, 1991, 351(6326): 469−472. doi: 10.1038/351469a0
    [10] Lim H, Chang Kuangan, Huang Zhicheng, et al. Experimental study on plunging breaking waves in deep water[J]. Journal of Geophysical Research: Oceans, 2015, 120(3): 2007−2049. doi: 10.1002/2014JC010269
    [11] Tian Zhigang, Perlin M, Choi W. Energy dissipation in two-dimensional unsteady plunging breakers and an eddy viscosity model[J]. Journal of Fluid Mechanics, 2010, 655: 217−257. doi: 10.1017/S0022112010000832
    [12] Rapp R J. Laboratory measurements of deep water breaking waves[D]. Cambridge: Massachusetts Institute of Technology, 1986.
    [13] 张怡辉. 海浪模式白浪耗散项的改进和海洋水体混合过程的研究[D]. 大连: 大连理工大学, 2016.

    Zhang Yihui. The study of whitecapping dissipation improvement in wave model and the ocean mixing process[D]. Dalian: Dalian University of Technology, 2016.
    [14] Banner M L, Peirson W L. Wave breaking onset and strength for two-dimensional deep-water wave groups[J]. Journal of Fluid Mechanics, 2007, 585: 93−115. doi: 10.1017/S0022112007006568
    [15] Longuet-Higgins M S. Breaking waves in deep or shallow water[C]//Proceedings of the 10th Symposium on Naval Hydrodynamics. Washington: Government Printing Office, 1974.
    [16] Melville W K, Veron F, White C J. The velocity field under breaking waves: coherent structures and turbulence[J]. Journal of Fluid Mechanics, 2002, 454: 203−233. doi: 10.1017/S0022112001007078
    [17] 常艳玲. 波浪破碎过程周期演化特征的试验研究[D]. 大连: 大连理工大学, 2016.

    Chang Yanling. Experimental study on the evolution characteristics of wave periods of breaking waves[D]. Dalian: Dalian University of Technology, 2016.
    [18] 黄金刚. 二维聚焦极限波浪的模拟研究[D]. 大连: 大连理工大学, 2004.

    Huang Jin’gang. The study of numerical and physical simulation of two-dimensional focusing waves[D]. Dalian: Dalian University of Technology, 2004.
    [19] 俞聿修. 随机波浪及其工程应用[M]. 大连: 大连理工大学出版社, 2003.

    Yu Yuxiu. Random Wave and Its Applications for Engineering[M]. Dalian: Dalian University of Technology Press, 2003.
    [20] Goda Y. A comparative review on the functional forms of directional wave spectrum[J]. Coastal Engineering, 1999, 1(41): 1−20.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  401
  • HTML全文浏览量:  183
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-01
  • 修回日期:  2022-11-09
  • 网络出版日期:  2023-04-06
  • 刊出日期:  2023-03-31

目录

    /

    返回文章
    返回