Cumulative damage analysis of ice-induced structural fatigue for polar ships navigating in ice-covered regions
-
摘要: 极地船舶在冰区航行中经常与各种类型的海冰发生不同程度的碰撞,充足的疲劳强度储备至关重要。本文提出了基于实测冰载荷的极地船舶结构冰激疲劳的累积损伤分析方法。以“雪龙”号极地考察船为研究对象,通过对我国第8次北极科学考察中的冰厚和航速等现场测量数据进行统计分析,在冰厚0.5~2.5 m、航速2~12 kn范围内构造冰激疲劳工况,并将二者的联合概率分布作为疲劳工况的发生概率;基于支持向量机方法反演识别出典型工况下的冰载荷时程,通过动力学分析确定关键位置及相应的热点应力,并采用雨流计数法统计应力循环次数;最后通过S-N曲线和Miner线性累积损伤理论进一步计算该航次内的疲劳损伤度,验证了“雪龙”号在冰区航行的安全性。本文对极地船舶结构的抗冰设计和安全评估具有一定的参考意义。Abstract: Polar ships always collide with various types of sea ice in varying degrees during their voyages in ice-covered regions, so sufficient fatigue strength reserves are essential. This paper proposes a cumulative damage analysis method for ice-induced fatigue on polar ship structures based on field measured ice loads. Firstly, according to the statistical analysis of the field data of ice thickness and sailing speed of RV Xue Long during the China’s 8th Arctic Scientific Expedition, ice-induced fatigue conditions are constructed within the ice thickness range of 0.5−2.5 m and the sailing speed range of 2−12 kn. The joint probability distribution of the two parameters is taken as the occurrence probability of fatigue conditions. Then, the time histories of ice loads under typical conditions are identified based on the support vector machine method. The key positions and corresponding hot spot stresses are determined by dynamic analysis. The rainflow counting algorithm is adopted to count the number of stress cycles. Finally, the fatigue damage during the voyage is further calculated by S-N curve and Miner linear cumulative damage theory, which verifies the ice navigation safety of RV Xue Long. This paper has certain reference significance for the ice-resistant design and safety evaluation of polar ship structures.
-
S-N曲线类型 lg K m C 12.540 3.0 D 12.182 3.0 表 2 冰厚子工况的划分及相应的出现概率
Tab. 2 Division of ice thickness sub-conditions and corresponding occurrence probability
冰厚范围/m 出现概率 冰厚范围/m 出现概率 0.5~0.7 3.72 ×10−2 1.5~1.7 2.00 × 10−1 0.7~0.9 2.13 × 10−2 1.7~1.9 1.44 × 10−1 0.9~1.1 7.71 × 10−2 1.9~2.1 9.31 × 10−2 1.1~1.3 1.54 × 10−1 2.1~2.3 3.46 × 10−2 1.3~1.5 2.21 × 10−1 2.3~2.5 1.86 × 10−2 表 3 航速子工况的划分及相应的出现概率
Tab. 3 Division of sailing speed sub-conditions and corresponding occurrence probability
航速范围/kn 出现概率 航速范围/kn 出现概率 2~3 3.19 × 10−2 7~8 2.10 × 10−1 3~4 4.26 × 10−2 8~9 6.65 × 10−2 4~5 1.09 × 10−1 9~10 3.19 × 10−2 5~6 2.37 × 10−1 10~11 1.06 × 10−2 6~7 2.55 × 10−1 11~12 5.30 × 10−3 表 4 艏部结构模型的材料属性
Tab. 4 Material properties of bow structure model
参数 数值 单位 密度 7 850 kg/m3 弹性模量 206 GPa 屈服强度 355 MPa 泊松比 0.3 — 表 5 典型工况下关键位置的节点编号及热点应力
Tab. 5 Node numbers and hot spot stresses of key positions under typical working conditions
关键
位置节点
编号热点应力/MPa 工况一
(hi = 1.73 m, Vs= 6.9 kn )工况二
(hi = 1.13 m, Vs= 3.3 kn)1 15983 225.20 64.60 2 26613 225.00 64.57 3 15984 223.70 64.19 4 15687 221.70 63.62 5 15979 221.70 63.60 6 28244 221.60 63.59 7 26611 221.10 63.43 8 26507 208.80 59.90 表 6 主要典型工况下关键位置处的累积疲劳损伤度
Tab. 6 Cumulative fatigue damage at key positions under main typical working conditions
工况编号 冰厚/m 航速/kn 出现概率 累积作用时间/min 关键位置处的累积疲劳损伤度 15983 15687 26507 1 1.73 6.9 5.32 × 10−2 1226 1.99 × 10−3 1.84 × 10−3 1.36 × 10−3 2 1.13 3.3 2.66 × 10−3 61 5.20 × 10−8 4.73 × 10−8 3.27 × 10−8 3 1.73 3.7 1.06 × 10−2 244 1.18 × 10−5 1.07 × 10−5 7.24 × 10−6 4 1.71 4.1 2.39 × 10−2 551 4.10 × 10−5 3.70 × 10−5 2.48 × 10−5 5 1.64 6.3 3.46 × 10−2 797 8.86 × 10−4 8.20 × 10−4 6.06 × 10−4 6 1.59 5.6 5.32 × 10−2 1226 7.72 × 10−4 7.18 × 10−4 4.82 × 10−4 7 1.56 7.2 5.85 × 10−2 1348 1.37 × 10−3 1.27 × 10−3 9.60 × 10−4 8 1.52 4.5 2.13 × 10−2 491 3.76 × 10−5 3.40 × 10−5 2.28 × 10−5 9 1.48 3.1 1.60 × 10−2 369 1.05 × 10−5 9.54 × 10−6 6.47 × 10−6 10 1.45 6.2 6.12 × 10−2 1410 1.93 × 10−4 1.74 × 10−4 1.16 × 10−4 11 1.44 5.1 5.85 × 10−2 1348 5.63 × 10−5 5.10 × 10−5 3.45 × 10−5 12 1.32 7.1 3.99 × 10−2 919 3.80 × 10−5 3.44 × 10−5 2.33 × 10−5 13 1.29 5.2 2.66 × 10−2 613 8.35 × 10−6 7.58 × 10−6 5.17 × 10−6 14 1.28 7.5 4.79 × 10−2 1104 2.26 × 10−5 2.05 × 10−5 1.40 × 10−5 15 1.23 6.7 3.46 × 10−2 797 1.30 × 10−5 1.18 × 10−5 8.02 × 10−6 16 1.18 4.7 1.86 × 10−2 429 4.05 × 10−6 3.68 × 10−6 2.51 × 10−6 17 1.05 6.5 2.39 × 10−2 551 2.45 × 10−6 2.22 × 10−6 1.52 × 10−6 18 1.03 7.8 1.33 × 10−2 306 1.19 × 10−6 1.08 × 10−6 7.42 × 10−7 -
[1] 刘大海, 马云瑞, 王春娟, 等. 全球气候变化环境下北极航道资源发展趋势研究[J]. 中国人口·资源与环境, 2015, 25(S1): 6−9.Liu Dahai, Ma Yunrui, Wang Chunjuan, et al. Developments of Arctic passage resources under global climate change[J]. China Population, Resources and Environment, 2015, 25(S1): 6−9. [2] 孙鲁闽. 北极航道现状与发展趋势及对策[J]. 海洋工程, 2016, 34(3): 123−132. doi: 10.16483/j.issn.1005-9865.2016.03.014Sun Lumin. Status development tendency and strategy of Arctic passage[J]. The Ocean Engineering, 2016, 34(3): 123−132. doi: 10.16483/j.issn.1005-9865.2016.03.014 [3] 周燕, 王元清, 戴国欣, 等. 低温对钢结构疲劳性能影响研究综述[J]. 低温建筑技术, 2013, 35(7): 5−9. doi: 10.3969/j.issn.1001-6864.2013.07.002Zhou Yan, Wang Yuanqing, Dai Guoxin, et al. Status on low temperature fatigue behavior of steel struture[J]. Low Temperature Architecture Technology, 2013, 35(7): 5−9. doi: 10.3969/j.issn.1001-6864.2013.07.002 [4] Johnston M, Timco G W, Frederking R, et al. Measuring global impact forces on the CCGS Terry Fox with an inertial measurement system called MOTAN[J]. Cold Regions Science and Technology, 2008, 52(1): 67−82. doi: 10.1016/j.coldregions.2007.04.014 [5] Leira B, Børsheim L, Espeland Ø, et al. Ice-load estimation for a ship hull based on continuous response monitoring[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2009, 223(4): 529−540. doi: 10.1243/14750902JEME141 [6] Aksnes V. A simplified interaction model for moored ships in level ice[J]. Cold Regions Science and Technology, 2010, 63(1/2): 29−39. [7] 何帅康, 陈晓东, 孔帅, 等. 基于动力效应的船体远场冰载荷测量与识别[J]. 中国舰船研究, 2021, 16(5): 54−63. doi: 10.19693/j.issn.1673-3185.02065He Shuaikang, Chen Xiaodong, Kong Shuai, et al. Measurement and identification of ice loads on hull structures in far field based on dynamic effects[J]. Chinese Journal of Ship Research, 2021, 16(5): 54−63. doi: 10.19693/j.issn.1673-3185.02065 [8] 崔洪宇, 胡大士, 孔帅, 等. 基于正则化方法的雪龙号破冰船冰载荷反演的研究[J]. 中国造船, 2020, 61(1): 109−119. doi: 10.3969/j.issn.1000-4882.2020.01.011Cui Hongyu, Hu Dashi, Kong Shuai, et al. Study on inversion of ice load for Xue Long icebreaker based on regularization method[J]. Shipbuilding of China, 2020, 61(1): 109−119. doi: 10.3969/j.issn.1000-4882.2020.01.011 [9] Wang Jianwei, Chen Xiaodong, Duan Qinglin, et al. Eliminating the influence of measuring point failure in ice load identification of polar ship structures[J]. Ocean Engineering, 2022, 261: 112082. doi: 10.1016/j.oceaneng.2022.112082 [10] Wang Jianwei, Chen Xiaodong, Sun Kai, et al. Far-field identification of ice loads on ship structures by radial basis function neural network[J]. Ocean Engineering, 2023, 282: 115072. [11] Bridges R, Riska K, Zhang Shengming. Preliminary results of investigation on the fatigue of ship hull structures when navigating in ice[C]//Proceedings of the 7th International Conference and Exhibition on Performance of Ships and Structures in Ice, ICETECH 2006. Banff, Alberta, Canada: SNAME, 2006. [12] Suyuthi A, Leira B J, Riska K. Fatigue damage of ship hulls due to local ice-induced stresses[J]. Applied Ocean Research, 2013, 42: 87−104. doi: 10.1016/j.apor.2013.05.003 [13] Kim J H, Kim Y. Numerical simulation on the ice-induced fatigue damage of ship structural members in broken ice fields[J]. Marine Structures, 2019, 66: 83−105. doi: 10.1016/j.marstruc.2019.03.002 [14] Hwang M R, Lee T K, Kang D H, et al. A study on ice-induced fatigue life estimation based on measured data of the ARAON[C]//Proceedings of the 26th International Ocean and Polar Engineering Conference, ISOPE 2016. Rhodes, Greece: International Society of Offshore and Polar Engineers, 2016. [15] Chai Wei, Leira B J, Naess A. Short-term extreme ice loads prediction and fatigue damage evaluation for an icebreaker[J]. Ships and Offshore Structures, 2018, 13(S1): 127−137. [16] Kim J H. Development of the analysis procedure for the ice-induced fatigue damage of a ship in broken ice fields[J]. Journal of Offshore Mechanics and Arctic Engineering, 2020, 142(6): 061601. doi: 10.1115/1.4046874 [17] 罗本永, 张升明, 陈忱. 基于冰载荷引起的船体结构疲劳损伤分析方法[J]. 船舶工程, 2020, 42(9): 19−24, 69. doi: 10.13788/j.cnki.cbgc.2020.09.04Luo Benyong, Zhang Shengming, Chen Chen. Fatigue damage analysis method of ship structure based on ice load[J]. Ship Engineering, 2020, 42(9): 19−24, 69. doi: 10.13788/j.cnki.cbgc.2020.09.04 [18] Zhang Shengming, Bridges R, Tong J. Fatigue design assessment of ship structures induced by ice loading– An introduction to the ShipRight FDA ICE procedure[C]//Proceedings of the 21th International Offshore and Polar Engineering Conference, ISOPE-2011. Maui, Hawaii, USA: International Society of Offshore and Polar Engineers, 2011. [19] 陈崧, 竺一峰, 胡嘉骏, 等. 船体结构S-N曲线选取方法[J]. 舰船科学技术, 2014, 36(1): 22−26.Chen Song, Zhu Yifeng, Hu Jiajun, et al. Research on selection method of S-N curve for hull structures[J]. Ship Science and Technology, 2014, 36(1): 22−26. [20] 中国船级社. 船体结构疲劳强度指南[S]. 北京: 中国船级社, 2021.China Classification Society. Guidelines for fatigue strength of hull structures[S]. Beijing: China Classification Society, 2021. [21] 倪侃. 随机疲劳累积损伤理论研究进展[J]. 力学进展, 1999, 29(1): 43−65.Ni Kan. Advances in stochastic theory of fatigue damage accumulation[J]. Advances in Mechanics, 1999, 29(1): 43−65. [22] Miner M A. Cumulative damage in fatigue[J]. Journal of Applied Mechanics, 1945, 12(3): A159−A164. doi: 10.1115/1.4009458 [23] 王键伟, 段庆林, 季顺迎. 冰区航行中船舶结构冰载荷的现场测量与反演方法研究进展[J]. 力学进展, 2020, 50(1): 93−123.Wang Jianwei, Duan Qinglin, Ji Shunying. Research progress of field measurements and inversion methods of ice loads on ship structure during ice navigation[J]. Advances in Mechanics, 2020, 50(1): 93−123. [24] 何帅康, 陈晓东, 张宝森, 等. 基于实船试验的河冰载荷特性研究[J]. 中国造船, 2022, 63(4): 46−58.He Shuaikang, Chen Xiaodong, Zhang Baosen, et al. Study on river ice load characteristics based on field measurements[J]. Shipbuilding of China, 2022, 63(4): 46−58. [25] Suominen M, Kujala P, Romanoff J, et al. Influence of load length on short-term ice load statistics in full-scale[J]. Marine Structures, 2017, 52: 153−172. doi: 10.1016/j.marstruc.2016.12.006 [26] 王键伟, 袁奎霖, 季顺迎. 船舶结构冰载荷的监测识别方法及时空特性分析[J]. 中国造船, 2023, 64(4): 41−56.Wang Jianwei, Yuan Kuilin, Ji Shunying. Method of monitoring and identifying ice load on ship structures and analysis of its spatial-temporal characteristics[J]. Shipbuilding of China, 2023, 64(4): 41−56. [27] 王键伟, 陈晓东, 何帅康, 等. 失效测点影响下极地船舶结构冰载荷的有效识别方法[J]. 工程力学, 2021, 38(7): 226−238. doi: 10.6052/j.issn.1000-4750.2020.07.0507Wang Jianwei, Chen Xiaodong, He Shuaikang, et al. An effective method for identifying ice loads on polar ship structures under the influence of failure measuring points[J]. Engineering Mechanics, 2021, 38(7): 226−238. doi: 10.6052/j.issn.1000-4750.2020.07.0507 [28] 孔帅, 崔洪宇, 季顺迎. 船舶结构海冰载荷的实船测量及反演方法研究[J]. 振动与冲击, 2020, 39(20): 8−16. doi: 10.13465/j.cnki.jvs.2020.20.002Kong Shuai, Cui Hongyu, Ji Shunying. Field measurement and an identification method of sea ice load on ship structures[J]. Journal of Vibration and Shock, 2020, 39(20): 8−16. doi: 10.13465/j.cnki.jvs.2020.20.002 [29] Kong Shuai, Cui Hongyu, Wu Gang, et al. Full-scale identification of ice load on ship hull by least square support vector machine method[J]. Applied Ocean Research, 2021, 106: 102439. doi: 10.1016/j.apor.2020.102439 [30] Wu Gang, Kong Shuai, Tang Wenyong, et al. Statistical analysis of ice loads on ship hull measured during Arctic navigations[J]. Ocean Engineering, 2021, 223: 108642. doi: 10.1016/j.oceaneng.2021.108642 [31] Downing S D, Socie D F. Simple rainflow counting algorithms[J]. International Journal of Fatigue, 1982, 4(1): 31−40. doi: 10.1016/0142-1123(82)90018-4