留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高分辨率海水表层二氧化碳分压重构

王馨仪 吴楚仪 吴森森 陈奕君 杜震洪

王馨仪,吴楚仪,吴森森,等. 高分辨率海水表层二氧化碳分压重构−以大西洋为例[J]. 海洋学报,2023,45(3):147–158 doi: 10.12284/hyxb2023048
引用本文: 王馨仪,吴楚仪,吴森森,等. 高分辨率海水表层二氧化碳分压重构−以大西洋为例[J]. 海洋学报,2023,45(3):147–158 doi: 10.12284/hyxb2023048
Wang Xinyi,Wu Chuyi,Wu Sensen, et al. Reconstruction of sea surface pCO2 with high resolution: A case study of the Atlantic Ocean[J]. Haiyang Xuebao,2023, 45(3):147–158 doi: 10.12284/hyxb2023048
Citation: Wang Xinyi,Wu Chuyi,Wu Sensen, et al. Reconstruction of sea surface pCO2 with high resolution: A case study of the Atlantic Ocean[J]. Haiyang Xuebao,2023, 45(3):147–158 doi: 10.12284/hyxb2023048

高分辨率海水表层二氧化碳分压重构以大西洋为例

doi: 10.12284/hyxb2023048
基金项目: 国家自然科学基金(201300001)。
详细信息
    作者简介:

    王馨仪(1997-),女,重庆市人,研究方向为遥感与地理信息系统、遥感反演。E-mail:21938031@zju.edu.cn

    通讯作者:

    杜震洪(1981-),男,教授,博士生导师,研究方向为遥感与地理信息系统、时空大数据与人工智能、大数据与地球−海洋系统。E-mail: duzhenhong@zju.edu.cn

  • 中图分类号: P732.6

Reconstruction of sea surface pCO2 with high resolution: A case study of the Atlantic Ocean

  • 摘要: 海洋是自然界中重要的碳汇,海−气二氧化碳通量通常利用大气和海水表层的二氧化碳分压(pCO2)差进行估算。受制于时空分布不均匀的观测样本和预测数据,目前已有海水表层二氧化碳分压的重构结果在空间分辨率上仍有较大可提升空间。为在高空间分辨率下更好地拟合时空变化,基于表层大洋二氧化碳地图(SOCAT)的海水表层二氧化碳逸度(f CO2)数据集和遥感卫星等多源数据,利用XGBoost模型建立了海水表层二氧化碳分压值与海洋物理、生物、光学等要素的非线性关系,并根据样本时空频率构建权重模型,最终重构了2000−2018年大西洋0.041 7°×0.041 7°下月度海水表层二氧化碳分压分布。预测结果的相关系数为0.966,均方根误差为8.087 μatm,平均偏差为4.012 μatm,与同类重构结果相比,海水表层二氧化碳分压的时空变化趋势一致性强,且在空间分辨率上具有优势。
  • 图  1  大西洋观测点空间分布

    Fig.  1  Space contribution of observations in Atlantic

    图  2  大西洋观测点数量时间分布

    Fig.  2  Numbers of observations in Atlantic in time serial

    图  3  预训练模型样本特征重要性

    Fig.  3  Feature importance of pre-training model

    图  4  训练模型特征重要性

    Fig.  4  Feature importance of model

    图  5  洋区划分

    Fig.  5  Partition of the Ocean

    图  6  模型验证

    Fig.  6  Verification of model

    图  7  观测站点对比

    Fig.  7  Comparison with observation stations

    图  8  观测站点对比

    Fig.  8  Comparison with observation stations

    图  9  大西洋大气与海洋pCO2

    Fig.  9  pCO2 of air and sea in Atlantic

    图  10  2000−2018年南北海域海水二氧化碳分压

    Fig.  10  pCO2 of sea water for south and north sea area

    图  11  大西洋海水表层二氧化碳分压观测数据及重构结果(红色点表示观测样本)

    Fig.  11  Obeservations and reconstruction result of sea surface pCO2 in Atlantic (red points present for obeservation samples)

    图  12  巴哈马海域海水表层二氧化碳分压重构结果(点数据表示绝对偏差)

    Fig.  12  Reconstruction result of sea surface pCO2 in Bahamas sea area (points present the Bias)

    表  1  ESA OC-CCI使用波段说明

    Tab.  1  Introduction of bands used in ESA OC-CCI

    遥感产品波长/
    nm
    遥感产品波长/
    nm
    遥感产品波长/
    nm
    黄色物质和碎屑吸收系数(adg412总吸收系数(atot412遥感反射率(Rrs412
    443443443
    490490490
    510510510
    560560560
    665665665
    浮游植物吸收
    系数(aph
    412粒子后向散射
    系数(bbp
    412向下漫射衰减
    系数(Kd
    490
    443443
    490490 叶绿素a(Chl a)浓度
    510510
    560560
    665665
    注:“−”代表空值。
    下载: 导出CSV

    表  2  辅助数据来源

    Tab.  2  Source of ancillary data

    数据类型数据来源数据集空间分辨率
    遥感数据MODIS Terra传感器SST0.041 7°×0.041 7°
    模式数据ECCO2 Cube92SSS0.25°×0.25°
    MLD
    GML CarbonTracker CT2019BxCO23°×2°
    再分析数据ERA5 单层月均数据集SST0.25°×0.25°
    u10
    下载: 导出CSV

    表  3  洋区模型验证

    Tab.  3  Verification of model for ocean area

    洋区RMSE/μatmAD/μatmR2
    北大西洋6.0012.1430.984
    南大西洋5.2951.9870.991
    下载: 导出CSV

    表  4  观测站点误差

    Tab.  4  Error with observation stations

    站点位置RMSE/μatmAD/μatm
    BATS31.66°N, 64.16°W18.9014.37
    ESTOC29.04°N, 15.50°W11.954.04
    下载: 导出CSV

    表  5  重构结果均方根误差

    Tab.  5  RMSE of reconstruction result

    时次RMSE/μatm
    XGBoostSOM-FFN
    2017年1月4.4814.97
    2017年4月4.9916.21
    2017年7月5.4416.29
    2017年10月3.3111.76
    下载: 导出CSV
  • [1] Hannah L. Chapter 2—The Climate System and Climate Change[M]. London: Academic Press, 2011: 13−52.
    [2] Friedlingstein P, Jones M W, O’Sullivan M, et al. Global carbon budget 2021[J]. Earth System Science Data, 2022, 14(4): 1917−2005. doi: 10.5194/essd-14-1917-2022
    [3] Bai Yan, Cai Weijun, He Xianqiang, et al. A mechanistic semi-analytical method for remotely sensing sea surface pCO2 in river-dominated coastal oceans: a case study from the East China Sea[J]. Journal of Geophysical Research: Oceans, 2015, 120(3): 2331−2349. doi: 10.1002/2014JC010632
    [4] 邱爽, 叶海军, 张玉红, 等. 基于航次观测和再分析资料的南海海表二氧化碳分压反演及变化机制分析[J]. 热带海洋学报, 2022, 41(1): 106−116. doi: 10.11978/2021030

    Qiu Shuang, Ye Haijun, Zhang Yuhong, et al. Multi-linear regression of partial pressure of sea-surface carbon dioxide in the South China Sea and its mechanism[J]. Journal of Tropical Oceanography, 2022, 41(1): 106−116. doi: 10.11978/2021030
    [5] Chen Shuangling, Hu Chuanmin, Byrne R H, et al. Remote estimation of surface pCO2 on the West Florida Shelf[J]. Continental Shelf Research, 2016, 128: 10−25. doi: 10.1016/j.csr.2016.09.004
    [6] Nurdjaman S. Estimation of partial pressure of CO2 (pCO2) around mount Krakatau waters, Sunda Straits, Indonesia[J]. Borneo Journal of Marine Science and Aquaculture (BJoMSA), 2021, 5(1): 25−31. doi: 10.51200/bjomsa.v5i1.2711
    [7] Chen Shuangling, Hu Chuanmin, Barnes B B, et al. A machine learning approach to estimate surface ocean pCO2 from satellite measurements[J]. Remote Sensing of Environment, 2019, 228: 203−226. doi: 10.1016/j.rse.2019.04.019
    [8] Dixit A, Lekshmi K, Bharti R, et al. Net sea-air CO2 fluxes and modeled partial pressure of CO2 in open ocean of bay of Bengal[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(7): 2462−2469. doi: 10.1109/JSTARS.2019.2902253
    [9] Wang Yanjun, Li Xiaofeng, Song Jinming, et al. Carbon sinks and variations of pCO2 in the Southern Ocean from 1998 to 2018 based on a deep learning approach[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3495−3503. doi: 10.1109/JSTARS.2021.3066552
    [10] Takahashi T, Sutherland S C, Wanninkhof R, et al. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56(8/10): 554−577.
    [11] Landschützer P, Gruber N, Bakker D C E. Decadal variations and trends of the global ocean carbon sink[J]. Global Biogeochemical Cycles, 2016, 30(10): 1396−1417. doi: 10.1002/2015GB005359
    [12] Krishna K V, Shanmugam P, Nagamani P V. A multiparametric nonlinear regression approach for the estimation of global surface ocean pCO2 using satellite oceanographic data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 6220−6235. doi: 10.1109/JSTARS.2020.3026363
    [13] Chen Tianqi, Guestrin C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 785−794.
    [14] Bakker D C E, Pfeil B, Landa C S, et al. A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT)[J]. Earth System Science Data, 2016, 8(2): 383−413. doi: 10.5194/essd-8-383-2016
    [15] Dickson A, Sabine C L, Christian J R. Guide to best practices for ocean CO2 measurements[R]. Sidney: North Pacific Marine Science Organization, 2007.
    [16] Sathyendranath S, Brewin R J W, Brockmann C, et al. An ocean-colour time series for use in climate studies: the experience of the ocean-colour climate change initiative (OC-CCI)[J]. Sensors, 2019, 19(19): 4285. doi: 10.3390/s19194285
    [17] Menemenlis D, Campin J M, Heimbach P, et al. ECCO2: High resolution global ocean and sea ice data synthesis[J]. Mercator Ocean Quarterly Newsletter, 2008, 31: 13−21.
    [18] Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999−2049. doi: 10.1002/qj.3803
    [19] Peters W, Jacobson A R, Sweeney C, et al. An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker[J]. Proceedings of the National Academy of Sciences, 2007, 104(48): 18925−18930. doi: 10.1073/pnas.0708986104
    [20] Sabine C L, Hankin S, Koyuk H, et al. Surface Ocean CO2 Atlas (SOCAT) gridded data products[J]. Earth System Science Data, 2013, 5(1): 145−153. doi: 10.5194/essd-5-145-2013
    [21] Bates N R. Interannual variability of the oceanic CO2 sink in the subtropical gyre of the North Atlantic Ocean over the last 2 decades[J]. Journal of Geophysical Research: Oceans, 2007, 112(C9): C09013.
    [22] González-Dávila M, Santana-Casiano J M. Carbon dioxide, temperature, salinity and other variables collected via time series monitoring from METEOR, POSEIDON and others in the North Atlantic Ocean from 1995−10−02 to 2009−11−25 (NCEI Accession 0100064)[Z]. Dataset: NOAA National Centers for Environmental Information, 2012.
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  411
  • HTML全文浏览量:  87
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-22
  • 修回日期:  2022-10-12
  • 网络出版日期:  2022-10-25
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回