留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柱状珊瑚砂静水沉降试验研究

蒋超 陈杰 蒋昌波 姚震 梁海 伍志元

蒋超,陈杰,蒋昌波,等. 柱状珊瑚砂静水沉降试验研究[J]. 海洋学报,2023,45(4):57–67 doi: 10.12284/hyxb2023043
引用本文: 蒋超,陈杰,蒋昌波,等. 柱状珊瑚砂静水沉降试验研究[J]. 海洋学报,2023,45(4):57–67 doi: 10.12284/hyxb2023043
Jiang Chao,Chen Jie,Jiang Changbo, et al. Experimental study on settlement of rod coral sand in stagnant water[J]. Haiyang Xuebao,2023, 45(4):57–67 doi: 10.12284/hyxb2023043
Citation: Jiang Chao,Chen Jie,Jiang Changbo, et al. Experimental study on settlement of rod coral sand in stagnant water[J]. Haiyang Xuebao,2023, 45(4):57–67 doi: 10.12284/hyxb2023043

柱状珊瑚砂静水沉降试验研究

doi: 10.12284/hyxb2023043
基金项目: 国家重点研发计划(2021YFB2601100);国家自然科学基金重点项目(51839002);国家自然科学基金面上项目(51979014,52271257);湖南省杰出青年科学基金项目(2022JJ10047)
详细信息
    作者简介:

    蒋超(1999-),男,湖南省邵阳市人,主要从事珊瑚砂运动特性研究。E-mail: 841072313@qq.com

    通讯作者:

    陈杰(1982-),男,广西壮族自治区桂林市人,博士,教授,主要从事河口海岸动力学及泥沙运动研究。E-mail: chenjie166@163.com

  • 中图分类号: P736.21+3

Experimental study on settlement of rod coral sand in stagnant water

  • 摘要: 沉降速度是珊瑚砂的一个重要物理参数。由于柱状珊瑚砂与其他形状的珊瑚砂有着明显的差异,套用现有珊瑚砂的沉速公式进行计算并不合适。本文选取柱状珊瑚砂进行单颗粒沉降试验,研究静水中柱状珊瑚砂沉降速度及其影响因素,通过讨论分析不同的等效粒径和形状系数对柱状珊瑚砂沉降速度的影响,发现柱状珊瑚砂的沉降速度与等容粒径和Corey形状系数密切相关,基于本文试验数据推求了适用于计算柱状珊瑚砂沉降速度的经验公式,丰富了海岸泥沙理论。
  • 图  1  沉降试验布置图

    Fig.  1  Schematic graph of settlement experiment

    图  2  获取形状参数流程图

    Fig.  2  Flow chart of getting the shape factors

    图  3  颗粒形状分类图

    Fig.  3  Graph of particle shape classification

    图  4  不同的等效粒径大小与形状系数分布

    Fig.  4  Distribution graph of different equivalent particle sizes and shape coefficients

    图  5  沉降速度与形状系数分布

    Fig.  5  Distribution graph of settling velocitys and shape coefficients

    图  6  本文沉降速度与前人研究沉速降速度对比

    Fig.  6  Comparison of particle settling velocitys of the present study with those of previous studies

    图  7  不同雷诺数与阻力系数的关系

    Fig.  7  Relationships between different Reynolds numbers and drag coefficients

    图  8  沉降速度预测值和实测值对比

    Fig.  8  Comparison of calculated and tested settling velocity

    图  9  沉降速度预测值和实测值拟合

    Fig.  9  The fitting relationship between the predicted value and the measured value of the settling velocity

    表  1  不同等效粒径和形状系数方案设计

    Tab.  1  Programmes of different equivalent particle sizes and shape coefficients

    组次等效粒径形状系数
    1轴平均粒径Corey形状系数
    2轴平均粒径Wang形状系数
    3等容粒径Corey形状系数
    4等容粒径Wang形状系数
    5投影粒径Corey形状系数
    6投影粒径Wang形状系数
    下载: 导出CSV

    表  2  Corey形状系数离散程度

    Tab.  2  Dispersions of Corey shape coefficient

    粒径大小Dn<0.20Dn <0.25Dn <0.30Dn <0.35
    第25百分位数0.6350.6370.6230.511
    第75百分位数0.6850.6850.6840.680
    四分位差0.0500.0480.0590.169
    注:Dn单位:cm。
    下载: 导出CSV

    表  3  不同形状系数与沉降速度相关系数

    Tab.  3  Correlation coefficients of shape coefficients and settling velocitys

    形状系数粗颗粒沉降速度/(cm·s−1细颗粒沉降速度/(cm·s−1
    Corey形状系数0.6340.277
    Wang形状系数0.5620.238
    下载: 导出CSV

    表  4  柱状珊瑚砂不同等效粒径和形状参数拟合公式对照

    Tab.  4  Comparison of fitting formulas for rod coral sand with different equivalent particle sizes and shape coefficients

    组次V/A拟合公式R2沉降速度拟合公式
    1${\dfrac{V}{ { {A_p} } } = 0.381S_{ f}^{0.434}{D_n} }$0.735${ {\omega ^2} = 0.762\dfrac{ {\left( { {\rho _s} - \rho } \right)g} }{ {\rho {C_d} } }S_{ f}^{0.434}{D_n} }$
    2$ {\dfrac{V}{{{A_p}}} = 0.366{\psi ^{0.243}}{D_n}} $0.726$ {{\omega ^2} = 0.732\dfrac{{\left( {{\rho _s} - \rho } \right)g}}{{\rho {C_d}}}{\psi ^{0.243}}{D_n}} $
    3${\dfrac{V}{ { {A_p} } } = 0.473S_{ f}^{0.428}{D_v} }$0.897${ {\omega ^2} = 0.946\dfrac{ {\left( { {\rho _s} - \rho } \right)g} }{ {\rho {C_d} } }S_{ f}^{0.428}{D_v} }$
    4$ {\dfrac{V}{{{A_p}}} = 0.452{\psi ^{0.234}}{D_v}} $0.886$ {{\omega ^2} = 0.904\dfrac{{\left( {{\rho _s} - \rho } \right)g}}{{\rho {C_d}}}{\psi ^{0.234}}{D_v}} $
    5${\dfrac{V}{ { {A_p} } } = 0.380S_{ f}^{0.765}{D_p} }$0.735${ {\omega ^2} = 0.760\dfrac{ {\left( { {\rho _s} - \rho } \right)g} }{ {\rho {C_d} } }S_{ f}^{0.765}{D_p} }$
    6$ {\dfrac{V}{{{A_p}}} = 0.355{\psi ^{0.435}}{D_p}} $0.708$ {{\omega ^2} = 0.710\dfrac{{\left( {{\rho _s} - \rho } \right)g}}{{\rho {C_d}}}{\psi ^{0.435}}{D_p}} $
    下载: 导出CSV

    表  5  不同等效粒径和形状参数拟合公式对照

    Tab.  5  Comparison of fitting formulas for rod coral sand with different equivalent particle sizes and shape coefficients

    组次阻力系数Cd拟合公式沉降速度ω拟合公式
    1$ {{C_d} = {\left( {\dfrac{{ - 403 \nu }}{{D_n^{1.5} \times {g^{0.5}}}} + 3.34} \right)^{ - 4.58}} + {\left( {\dfrac{{ - 205 \nu }}{{D_n^{1.5} \times {g^{0.5}}}} + 1.13} \right)^{0.405}}} $${ {\omega ^2} = 0.762\dfrac{ {\left( { {\rho _s} - \rho } \right)g} }{ {\rho {C_d} } }S_{ f}^{0.434}{D_n} }$
    2$ {{C_d} = {\left( {\dfrac{{ - 725 \nu }}{{D_n^{1.5} \times {g^{0.5}}}} + 4.82} \right)^{ - 2.77}} + {\left( {\dfrac{{ - 226 \nu }}{{D_n^{1.5} \times {g^{0.5}}}} + 1.14} \right)^{0.416}}} $$ {{\omega ^2} = 0.732\dfrac{{\left( {{\rho _s} - \rho } \right)g}}{{\rho {C_d}}}{\psi ^{0.243}}{D_n}} $
    3$ {{C_d} = {\left( {\dfrac{{ - 108 \nu }}{{D_v^{1.5} \times {g^{0.5}}}} + 2.39} \right)^{ - 11.60}} + {\left( {\dfrac{{ - 74.5 \nu }}{{D_v^{1.5} \times {g^{0.5}}}} + 1.03} \right)^{0.601}}} $${ {\omega ^2} = 0.946\dfrac{ {\left( { {\rho _s} - \rho } \right)g} }{ {\rho {C_d} } }S_{ f}^{0.428}{D_v} }$
    4$ {{C_d} = {\left( {\dfrac{{ - 172 \nu }}{{D_v^{1.5} \times {g^{0.5}}}} + 2.95} \right)^{ - 13.50}} + {\left( {\dfrac{{ - 95.3 \nu }}{{D_v^{1.5} \times {g^{0.5}}}} + 1.05} \right)^{0.486}}} $$ {{\omega ^2} = 0.904\dfrac{{\left( {{\rho _s} - \rho } \right)g}}{{\rho {C_d}}}{\psi ^{0.234}}{D_v}} $
    5$ {{C_d} = {\left( {\dfrac{{ - 210 \nu }}{{D_p^{1.5} \times {g^{0.5}}}} + 2.00} \right)^{ - 15.70}} + {\left( {\dfrac{{ - 182 \nu }}{{D_p^{1.5} \times {g^{0.5}}}} + 1.09} \right)^{0.533}}} $${ {\omega ^2} = 0.760\dfrac{ {\left( { {\rho _s} - \rho } \right)g} }{ {\rho {C_d} } }S_{ f}^{0.765}{D_p} }$
    6$ {{C_d} = {\left( {\dfrac{{ - 778 \nu }}{{D_p^{1.5} \times {g^{0.5}}}} + 4.57} \right)^{ - 14.12}} + {\left( {\dfrac{{ - 249 \nu }}{{D_p^{1.5} \times {g^{0.5}}}} + 1.14} \right)^{0.436}}} $$ {{\omega ^2} = 0.710\dfrac{{\left( {{\rho _s} - \rho } \right)g}}{{\rho {C_d}}}{\psi ^{0.435}}{D_p}} $
    下载: 导出CSV

    表  6  沉降速度计算误差表

    Tab.  6  Calculation error of the settling velocity

    EaveRMSE
    Wang公式[18]0.13463.1869
    本文公式训练组0.07141.7608
    本文公式验证组0.11912.6018
    下载: 导出CSV
  • [1] 孙宗勋. 南沙群岛珊瑚砂工程性质研究[J]. 热带海洋, 2000, 19(2): 1−8.

    Sun Zongxun. Engineering properties of coral sands in Nansha Islands[J]. Journal of Tropical Oceanography, 2000, 19(2): 1−8.
    [2] 沈扬, 冯照雁, 邓珏, 等. 南海珊瑚砂地基承载力模型试验研究[J]. 岩土力学, 2021, 42(5): 1281−1290. doi: 10.16285/j.rsm.2020.1316

    Shen Yang, Feng Zhaoyan, Deng Jue, et al. Model test on bearing capacity of coral sand foundation in the South China Sea[J]. Rock and Soil Mechanics, 2021, 42(5): 1281−1290. doi: 10.16285/j.rsm.2020.1316
    [3] Yang Yongkang, Yang Wu, Feng Chunyan. Experimental research on geotechnical engineering characteristics of coral reef in Xisha Islands[J]. IOP Conference Series: Earth and Environmental Science, 2021, 783(1): 012052. doi: 10.1088/1755-1315/783/1/012052
    [4] Ye Jianhong, Shan Jipeng, Zhou Haoran, et al. Numerical modelling of the wave interaction with revetment breakwater built on reclaimed coral reef islands in the South China Sea—Experimental verification[J]. Ocean Engineering, 2021, 235: 109325. doi: 10.1016/j.oceaneng.2021.109325
    [5] Lokier S W, Fiorini F. Temporal evolution of a carbonate coastal system, Abu Dhabi, United Arab Emirates[J]. Marine Geology, 2016, 381: 102−113. doi: 10.1016/j.margeo.2016.09.001
    [6] Milliman J D, Müller G, Förstner F. Recent Sedimentary Carbonates: Part 1 Marine Carbonates[M]. New York: Springer, 2012: 4.
    [7] Wang Xing, Wu Yang, Cui Jie, et al. Shape characteristics of coral sand from the South China Sea[J]. Journal of Marine Science and Engineering, 2020, 8(10): 803. doi: 10.3390/jmse8100803
    [8] 王新志. 南沙群岛珊瑚礁工程地质特性及大型工程建设可行性研究[D]. 武汉: 中国科学院岩土力学研究所, 2008: 82.

    Wang Xinzhi. Study on engineering geological properties of coral reefs and feasibility of large project construction on Nansha Islands[D]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, 2008: 82.
    [9] Wu Xuehui, Cai Yuanqiang, Xu Sifa, et al. Effects of size and shape on the crushing strength of coral sand particles under diametral compression test[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(2): 1829−1839. doi: 10.1007/s10064-020-01972-y
    [10] Lade P V, Liggio C D Jr, Nam J. Strain rate, creep, and stress drop-creep experiments on crushed coral sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(7): 941−953. doi: 10.1061/(ASCE)GT.1943-5606.0000067
    [11] 李小梅, 王芳, 韩林, 等. 珊瑚砂蠕变特性的试验研究[J]. 岩土工程学报, 2020, 42(11): 2124−2130.

    Li Xiaomei, Wang Fang, Han Lin, et al. Experimental study on creep properties of coral sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2124−2130.
    [12] 薛鹏, 周先齐, 蔡燕燕, 等. 饱和珊瑚砂三轴蠕变特性及经验模型[J]. 岩土工程学报, 2020, 42(S2): 255−260.

    Xue Peng, Zhou Xianqi, Cai Yanyan, et al. Triaxial creep characteristics and empirical model for saturated coral sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 255−260.
    [13] 吕亚茹, 王冲, 黄厚旭, 等. 珊瑚砂细观颗粒结构及破碎特性研究[J]. 岩土力学, 2021, 42(2): 352−360. doi: 10.16285/j.rsm.2020.0938

    Lü Yaru, Wang Chong, Huang Houxu, et al. Study on particle structure and crushing behaviors of coral sand[J]. Rock and Soil Mechanics, 2021, 42(2): 352−360. doi: 10.16285/j.rsm.2020.0938
    [14] 孙越, 肖杨, 周伟, 等. 钙质砂和石英砂压缩下的颗粒破碎与形状演化[J]. 岩土工程学报, 2022, 44(6): 1061−1068.

    Sun Yue, Xiao Yang, Zhou Wei, et al. Particle breakage and shape evolution of calcareous and quartz sands under compression[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1061−1068.
    [15] Bian C, Chen J, Jiang C B, et al. Threshold of motion of coral sediment under currents in flume experiments[J/OL]. Sedimentology, (2023-01-28). https://onlinelibrary.wiley.com/doi/10.1111/sed.13082.
    [16] Chen J, Yao Z, Jiang C B, et al. Experiment study of the evolution of coral sand particle clouds in water[J]. China Ocean Engineering, 2022, 36(5): 720−733. doi: 10.1007/s13344-022-0064-1
    [17] Smith D A, Cheung K F. Settling characteristics of calcareous sand[J]. Journal of Hydraulic Engineering, 2003, 129(6): 479−483. doi: 10.1061/(ASCE)0733-9429(2003)129:6(479)
    [18] Wang Yin, Zhou Lingxin, Wu Ye, et al. New simple correlation formula for the drag coefficient of calcareous sand particles of highly irregular shape[J]. Powder Technology, 2018, 326: 379−392. doi: 10.1016/j.powtec.2017.12.004
    [19] Riazi A, Vila-Concejo A, Salles T, et al. Improved drag coefficient and settling velocity for carbonate sands[J]. Scientific Reports, 2020, 10(1): 9465. doi: 10.1038/s41598-020-65741-3
    [20] Li Yanan, Yu Qian, Gao Shu, et al. Settling velocity and drag coefficient of platy shell fragments[J]. Sedimentology, 2020, 67(4): 2095−2110. doi: 10.1111/sed.12696
    [21] 金智涛, 郑建国, 张君, 等. 颗粒形状对珊瑚砂和石英砂沉降影响的试验研究[J]. 海洋通报, 2021, 40(4): 447−454.

    Jin Zhitao, Zheng Jianguo, Zhang Jun, et al. Experimental study on the influence of particle shape on the settlement of coral sand and quartz sand[J]. Marine Science Bulletin, 2021, 40(4): 447−454.
    [22] Stokes G G. On the effect of the internal friction of fluids on the motion of pendulums[J]. Transactions of the Cambridge Philosophical Society, 1901, 9: 1−141.
    [23] Dyer K R. Coastal and Estuarine Sediment Dynamics[M]. Chichester: Wiley, 1986: 358.
    [24] Dietrich W E. Settling velocity of natural particles[J]. Water Resources Research, 1982, 18(6): 1615−1626. doi: 10.1029/WR018i006p01615
    [25] Wu Weiming, Wang S S Y. Formulas for sediment porosity and settling velocity[J]. Journal of Hydraulic Engineering, 2006, 132(8): 858−862. doi: 10.1061/(ASCE)0733-9429(2006)132:8(858)
    [26] 李大鸣, 吕小海, 焦润红. 泥沙静水沉降阻力系数[J]. 水利学报, 2004(1): 1−5. doi: 10.3321/j.issn:0559-9350.2004.01.001

    Li Daming, Lü Xiaohai, Jiao Runhong. Resistance coefficient of sediment deposition in still water[J]. Journal of Hydraulic Engineering, 2004(1): 1−5. doi: 10.3321/j.issn:0559-9350.2004.01.001
    [27] Maiklem W R. Some hydraulic properties of bioclastic carbonate grains[J]. Sedimentology, 1968, 10(2): 101−109. doi: 10.1111/j.1365-3091.1968.tb01102.x
    [28] Corey A T. Influence of shape on the fall velocity of sand grains[D]. Colorado: Colorado State University, 1949: 29.
    [29] Zingg T. Beitrag zur schotteranalyse[D]. Zurich: Swiss Federal Institute of Technology in Zurich, 1935: 124.
    [30] Kim D, Son Y, Park J. Prediction of settling velocity of nonspherical soil particles using digital image processing[J]. Advances in Civil Engineering, 2018: 4647675.
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  240
  • HTML全文浏览量:  100
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-08
  • 修回日期:  2022-09-08
  • 网络出版日期:  2023-04-03
  • 刊出日期:  2023-03-31

目录

    /

    返回文章
    返回