留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于星载合成孔径雷达图像交叉谱的全球海浪特征研究

李慧敏 何宜军 王臣 林文明 杨劲松

李慧敏,何宜军,王臣,等. 基于星载合成孔径雷达图像交叉谱的全球海浪特征研究[J]. 海洋学报,2023,46(x):1–7 doi: 10.12284/hyxb2023040
引用本文: 李慧敏,何宜军,王臣,等. 基于星载合成孔径雷达图像交叉谱的全球海浪特征研究[J]. 海洋学报,2023,46(x):1–7 doi: 10.12284/hyxb2023040
Li Huimin,He Yijun,Wang Chen, et al. Study of global ocean waves based on SAR image cross-spectrum[J]. Haiyang Xuebao,2023, 46(x):1–7 doi: 10.12284/hyxb2023040
Citation: Li Huimin,He Yijun,Wang Chen, et al. Study of global ocean waves based on SAR image cross-spectrum[J]. Haiyang Xuebao,2023, 46(x):1–7 doi: 10.12284/hyxb2023040

基于星载合成孔径雷达图像交叉谱的全球海浪特征研究

doi: 10.12284/hyxb2023040
基金项目: 国家自然科学基金项目(43006163, 42206179, 42027805)。
详细信息
    作者简介:

    李慧敏(1990—),女,山东省淄博市人,讲师,研究方向为微波海洋遥感。E-mail:Huimin.li@nuist.edu.cn

    通讯作者:

    何宜军,教授/博士生导师,研究方向为海洋遥感。E-mail: yjhe@nuist.edu.cn

  • 中图分类号: P731.21

Study of global ocean waves based on SAR image cross-spectrum

  • 摘要: 星载合成孔径雷达(Synthetic Aperture Radar, SAR)因其全天时全天候的观测能力,为全球海洋动力环境要素研究提供了重要数据支撑。然而,SAR海浪成像是非线性过程,现有理论中的近似求解会导致海浪谱反演的信息缺失。SAR图像交叉谱技术的提出一定程度上突破了这一限制,能够很好地量化海浪谱特性及海浪传播方向。本研究延续前人系列成果,利用最新提出的面向径向海浪的图像谱强度,开展不同尺度海浪随局地风速的变化趋势分析,并基于雷达视向图像谱强度提取了谱峰波数,进而结合欧洲空间局环境遥感卫星波模式在开阔大洋获取的近400万景SAR图像,分析了谱峰波数的全球分布特征分析,为量化全球风浪耦合过程提供新视角,揭示了海浪与风速耦合关系的空间分布与季节变化规律。
  • 图  1  欧洲环境卫星先进合成孔径雷达数据的全球空间分布:a. 空间2.5° × 2.5°统计;b. 月统计

    Fig.  1  Data count of Envisat/ASAR: a. spatial grid of 2.5° × 2.5° and b. monthly data count

    图  2  MACS参数定义示意图

    a. SAR图像交叉谱;b. MACS剖面

    Fig.  2  Illustration of MACS definition

    a. SAR cross-spectrum; b. MACS profile3

    图  3  图像谱参数随风速变化趋势

    a. MACS47随风速变化的数据密度图,颜色表征数据个数,黑色实线为均值及标准差;b. 不同波长MACS随风速变化

    Fig.  3  Variation of MACS versus the wind speed

    a. MACS47 relative to wind speed. Color denotes the data count and solid black curve is the error bar; b. variation of MACS at various wavelengths

    图  4  太平洋150°~145°W间MACS平均剖面随纬度的季节变化

    a. 冬季;b. 春季;c. 夏季;d. 秋季

    Fig.  4  Seasonal variation of averaged MACS profile over 150°W-145°W along the latitude

    a. Winter; b. spring; c. summer; d. autumn

    图  5  3个感兴趣纬度处的均值图像谱参数剖面(a)及其季节变化(b-d)

    Fig.  5  Averaged MACS profile at three selected latitude transects (a) and their seasonal variation (b-d)

    图  6  全球径向峰值波数的季节变化

    a-d分别为春、夏、秋、冬;等值线为0.04 rad/m;空间分辨率为2.5° × 2.5°

    Fig.  6  Seasonal average of range peak wavenumber at the global scale

    a-d are winter, spring, summer and autumn; the contour line denotes the wavenumber equal to 0.04 rad/m; the spatial bin is 2.5° × 2.5° for both latitude and longitude

  • [1] Toba Y. Local balance in the air-sea boundary processes: I. On the growth process of wind waves[J]. Journal of Oceanography, 1972, 28(3): 109−120. doi: 10.1007/BF02109772
    [2] 陈戈, 杨杰, 张本涛, 等. 新一代海洋科学卫星的思考与展望[J]. 中国海洋大学学报, 2019, 49(10): 110−117.

    Chen Ge, Yang Jie, Zhang Bentao, et al. Thoughts and prospects on the new generation of marine science satellites[J]. Periodical of Ocean University of China, 2019, 49(10): 110−117.
    [3] Hauser D, Tison C, Amiot T, et al. SWIM: the first spaceborne wave scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 3000−3014. doi: 10.1109/TGRS.2017.2658672
    [4] Young I R. Seasonal variability of the global ocean wind and wave climate[J]. International Journal of Climatology, 1999, 19(9): 931−950. doi: 10.1002/(SICI)1097-0088(199907)19:9<931::AID-JOC412>3.0.CO;2-O
    [5] Young I R, Zieger S, Babanin A V. Global trends in wind speed and wave height[J]. Science, 2011, 332(6028): 451−455. doi: 10.1126/science.1197219
    [6] Hanley K E, Belcher S E, Sullivan P P. A global climatology of wind-wave interaction[J]. Journal of Physical Oceanography, 2010, 40(6): 1263−1282. doi: 10.1175/2010JPO4377.1
    [7] Stopa J E, Cheung K F, Tolman H L, et al. Patterns and cycles in the climate forecast system reanalysis wind and wave data[J]. Ocean Modelling, 2013, 70: 207−220. doi: 10.1016/j.ocemod.2012.10.005
    [8] Chen Ge, Chapron B, Ezraty R, et al. A global view of swell and wind sea climate in the ocean by satellite altimeter and scatterometer[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(11): 1849−1859. doi: 10.1175/1520-0426(2002)019<1849:AGVOSA>2.0.CO;2
    [9] Jiang Haoyu, Chen Ge. A global view on the swell and wind sea climate by the jason-1 mission: a revisit[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(8): 1833−1841. doi: 10.1175/JTECH-D-12-00180.1
    [10] Shimura T, Mori N, Mase H. Future projections of extreme ocean wave climates and the relation to tropical cyclones: ensemble experiments of MRI-AGCM3.2H[J]. Journal of Climate, 2015, 28(24): 9838−9856. doi: 10.1175/JCLI-D-14-00711.1
    [11] Portilla-Yandún J. The global signature of ocean wave spectra[J]. Geophysical Research Letters, 2018, 45(1): 267−276. doi: 10.1002/2017GL076431
    [12] 杨劲松. 合成孔径雷达海面风场、海浪和内波遥感技术[D]. 青岛: 中国海洋大学, 2001.

    Yang Jingsong. SAR remote sensing of sea surface wind field, ocean waves and internal waves [D]. Qingdao: Ocean University of China, 2001.
    [13] Stopa J E, Ardhuin F, Husson R, et al. Swell dissipation from 10 years of Envisat advanced synthetic aperture radar in wave mode[J]. Geophysical Research Letters, 2016, 43(7): 3423−3430. doi: 10.1002/2015GL067566
    [14] Ardhuin F, Collard F, Chapron B, et al. Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A[J]. Geophysical Research Letters, 2015, 42(7): 2317−2325. doi: 10.1002/2014GL062940
    [15] Li Xiaoming. A new insight from space into swell propagation and crossing in the global oceans[J]. Geophysical Research Letters, 2016, 43(10): 5202−5209. doi: 10.1002/2016GL068702
    [16] Li Huimin, Chapron B, Mouche A, et al. A new ocean SAR cross‐spectral parameter: definition and directional property using the global sentinel‐1 measurements[J]. Journal of Geophysical Research:Oceans, 2019, 124(3): 1566−1577. doi: 10.1029/2018JC014638
    [17] Li Huimin, Stopa J, Mouche A, et al. Assessment of ocean wave spectrum using global Envisat/ASAR data and hindcast simulation[J]. Remote Sensing of Environment, 2021, 264: 112614. doi: 10.1016/j.rse.2021.112614
  • 加载中
图(6)
计量
  • 文章访问数:  277
  • HTML全文浏览量:  124
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-03
  • 修回日期:  2023-12-19
  • 网络出版日期:  2022-11-14

目录

    /

    返回文章
    返回