留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西太平洋采薇海山群富钴结壳铂族元素地球化学特征与来源

高晶晶 刘季花 张辉 闫仕娟 汪虹敏

高晶晶,刘季花,张辉,等. 西太平洋采薇海山群富钴结壳铂族元素地球化学特征与来源[J]. 海洋学报,2023,45(4):82–94 doi: 10.12284/hyxb2023039
引用本文: 高晶晶,刘季花,张辉,等. 西太平洋采薇海山群富钴结壳铂族元素地球化学特征与来源[J]. 海洋学报,2023,45(4):82–94 doi: 10.12284/hyxb2023039
Gao Jingjing,Liu Jihua,Zhang Hui, et al. Geochemistry and source of platinum group elements in cobalt-rich crusts from Caiwei Seamounts in the western Pacific[J]. Haiyang Xuebao,2023, 45(4):82–94 doi: 10.12284/hyxb2023039
Citation: Gao Jingjing,Liu Jihua,Zhang Hui, et al. Geochemistry and source of platinum group elements in cobalt-rich crusts from Caiwei Seamounts in the western Pacific[J]. Haiyang Xuebao,2023, 45(4):82–94 doi: 10.12284/hyxb2023039

西太平洋采薇海山群富钴结壳铂族元素地球化学特征与来源

doi: 10.12284/hyxb2023039
基金项目: 崂山实验室科技创新项目(LSKJ202203602);国家自然科学基金(40976038);国际海域资源调查开发“十三五”资源环境课题(DY135-C1-1-04)。
详细信息
    作者简介:

    高晶晶(1980-),女,山东省青岛市人,工程师,主要从事海洋地球化学分析研究。E-mail: gaojingjing8@163.com

  • 中图分类号: P736.21+2

Geochemistry and source of platinum group elements in cobalt-rich crusts from Caiwei Seamounts in the western Pacific

  • 摘要: 为探讨富钴结壳铂族元素的来源,以西太平洋采薇海山群富钴结壳样品为研究对象,利用X射线衍射法、等离子体发射光谱法和质谱法,对富钴结壳样品进行了矿物组成、主量元素和铂族元素含量分析。研究表明,富钴结壳的主要结晶矿物为水羟锰矿,次要矿物有石英、斜长石、钾长石和碳氟磷灰石,同时含有大量非晶态铁氧/氢氧化物。富钴结壳中Mn和Fe含量最高,且明显富集铂族元素,铂族总量为142~1 352 ng/g,其中Pt为114~1 268 ng/g,占铂族总量的80%以上。老壳层的铂族元素含量高于新壳层,老壳层发生了磷酸盐化作用。富钴结壳的铂族元素之间发生了分异作用,Pd组(PPGE)含量高于Ir组(IPGE)。铂族元素配分模式显示Pt正异常和Pd负异常,具有Pt富集而Pd亏损特征,推测富钴结壳的铂族元素来源于洋壳蚀变过程中海山玄武岩和海水之间的水−岩反应。富钴结壳的铂族元素与CaO、P2O5、Ba和Cu正相关,推测铂族元素赋存于磷酸盐矿物相中。富钴结壳生长剖面从上到下,由新到老,铂族元素含量呈逐渐增加趋势,海水氧化性环境和高海洋生产力可增进磷酸盐化作用,从而进一步促进了铂族元素的富集。该研究对于揭示富钴结壳铂族元素的来源具有一定的参考价值。
  • 图  1  富钴结壳CD16样品采集站位图

    Fig.  1  The sampling location of cobalt-rich crust CD16

    图  2  富钴结壳CD16样品照片

    Fig.  2  The photo of cobalt-rich crust CD16

    图  3  富钴结壳样品X射线衍射图谱

    V. 水羟锰矿; Q. 石英; Pl. 斜长石; Or. 钾长石; CFA. 碳氟磷灰石

    Fig.  3  X-ray diffraction analysis of cobalt-rich crusts

    V. vernadite, Q. quartz, Pl. plagioclase, Or. orthoclase, CFA. carbonate fluorapatite

    图  4  富钴结壳成因判别三角图[28]

    Fig.  4  Ternary discrimination diagram of cobalt-rich crusts[28]

    图  5  富钴结壳与其他地质体铂族元素配分曲线图

    Fig.  5  Platinum group elements (PGE) distribution curves in cobalt-rich crusts and other geological bodies

    图  6  富钴结壳与其他地质体Pt/Pd−Ir/Pd关系图[35]

    Fig.  6  Correlation plots of Pt/Pd and Ir/Pd in cobalt-rich crusts and other geological bodies[35]

    图  7  富钴结壳铂族元素(PGE)和主量元素之间相关性图

    Fig.  7  Correlation plots of platinum group elements (PGE) and major elements in cobalt-rich crusts

    图  8  富钴结壳生长剖面中元素含量随深度变化曲线

    Fig.  8  Variation curves of elements contents with depth in the growth profile of cobalt-rich crusts

    表  1  富钴结壳CD16样品描述

    Tab.  1  The description of cobalt-rich crusts CD16

    样品号构造层深度/mm样品描述
    CD16(1)较致密层0~4表面有葡萄体状突起,树丛顶部
    CD16(2)4~8树丛状构造,黑褐色
    CD16(3)8~12树丛状构造,黑褐色
    CD16(4)12~16树丛状构造,黑褐色
    CD16(5)16~20柱状构造,黑色
    CD16(6)20~24柱状构造,黑色
    CD16(7)疏松层24~30树枝状构造,黄褐色,较多黏土杂质
    CD16(8)30~36树枝状构造,黄褐色,较多黏土杂质
    CD16(9)36~42树枝状构造,黄褐色,较多黏土杂质
    CD16(10)42~48树枝状构造,黄褐色,较多黏土杂质
    CD16(11)48~54树枝状构造,黄褐色,较多黏土杂质
    CD16(12)54~60树枝状构造,黄褐色,较多黏土杂质
    CD16(13)致密层60~66斑杂状构造,黑色,有磷酸盐脉
    CD16(14)66~72柱状构造,黑色,有磷酸盐脉
    CD16(15)72~78柱状构造,黑色,有磷酸盐脉
    CD16(16)78~84柱状构造,黑色,有磷酸盐脉
    CD16(17)84~90层纹状构造,黑色,较多磷酸盐脉
    下载: 导出CSV

    表  2  富钴结壳样品中常量元素含量

    Tab.  2  Major elements contents of cobalt-rich crusts

    样品号Mn/%Fe/%CaO/%P2O5/%Al2O3/%Na2O/%K2O/%MgO/%TiO2/%Co/%Cu/%Ni/%Ba/%Sr/%Mn/FeCaO/P2O5
    CD16(1)19.2518.503.101.042.482.890.661.921.330.460.040.300.110.141.042.98
    CD16(2)20.4520.323.200.982.752.830.731.981.440.490.050.320.120.151.013.27
    CD16(3)19.5619.763.080.893.062.870.771.921.470.480.060.340.130.140.993.46
    CD16(4)23.0419.073.370.882.342.860.702.031.590.610.080.420.140.161.213.83
    CD16(5)26.7417.383.750.881.082.990.602.181.840.780.100.530.150.171.544.26
    CD16(6)26.7117.633.780.871.123.020.622.162.070.750.110.530.160.171.524.34
    CD16(7)22.8217.393.270.781.642.690.651.892.080.570.110.420.150.151.314.19
    CD16(8)19.4519.022.980.782.562.510.751.832.080.420.110.340.160.141.023.82
    CD16(9)18.2119.612.890.823.082.400.831.861.970.360.110.310.150.140.933.52
    CD16(10)17.0820.022.810.854.022.320.992.011.830.330.120.280.150.130.853.31
    CD16(11)18.4717.742.950.793.352.350.911.981.880.450.130.330.150.131.043.73
    CD16(12)20.6016.073.470.973.032.350.932.092.210.550.160.400.170.131.283.58
    CD16(13)20.5616.003.801.142.742.380.902.082.150.530.180.430.180.141.283.33
    CD16(14)21.0713.3310.364.931.332.470.571.831.640.390.190.490.170.151.582.10
    CD16(15)17.9211.1816.988.881.172.300.501.571.310.250.160.410.150.161.601.91
    CD16(16)16.3811.3718.169.991.252.230.471.541.300.210.160.360.170.161.441.82
    CD16(17)18.6010.1116.299.110.722.230.481.431.620.340.150.350.200.171.841.79
    最小值16.3810.112.810.780.722.230.471.431.300.210.040.280.110.130.851.79
    最大值26.7420.3218.169.994.023.020.992.182.210.780.190.530.200.171.844.34
    平均值20.4116.746.132.622.222.570.711.901.750.470.120.390.150.151.263.25
    下载: 导出CSV

    表  3  富钴结壳样品中铂族元素含量

    Tab.  3  Platinum group elements (PGE) contents in cobalt-rich crusts

    样品号Os/
    (ng·g−1
    Ir/
    (ng·g−1
    Ru/
    (ng·g−1
    Rh/
    (ng·g−1
    Pt/
    (ng·g−1
    Pd/
    (ng·g−1
    PGE/
    (ng·g−1
    PPGE/
    (ng·g−1
    IPGE/
    (ng·g−1
    PPGE/
    IPGE
    Pt/PdPt/IrPd/IrδPtδPd
    CD16(1)0.394.9012.47.401143.1014212617.77.1136.923.30.636.320.21
    CD16(2)0.444.7015.010.91363.4017015120.17.5139.928.90.725.910.19
    CD16(3)0.374.2016.214.01582.6019617620.88.4760.937.70.626.950.15
    CD16(4)0.625.4018.415.61842.6022720324.48.3370.934.10.487.660.14
    CD16(5)0.695.7019.713.41821.8022319826.17.6110131.90.329.810.08
    CD16(6)0.655.7020.117.71971.4024221726.58.2014034.50.2510.50.06
    CD16(7)0.326.6019.919.53123.7036233626.812.584.447.30.569.730.13
    CD16(8)0.287.8021.322.64873.0054251329.417.516262.40.3815.60.08
    CD16(9)0.268.2018.821.95813.7963460827.222.315370.80.4616.90.08
    CD16(10)0.228.1018.825.56573.1271368727.125.421181.20.3919.50.08
    CD16(11)0.279.8419.533.77743.1284081229.627.424878.60.3220.00.07
    CD16(12)0.169.6918.432.38283.6089286528.230.623085.40.3720.30.07
    CD16(13)0.1610.7919.241.110733.521148112230.237.230599.50.3323.60.04
    CD16(14)0.1610.2520.833.58872.4095492531.329.637086.50.2326.20.04
    CD16(15)0.4511.3319.834.58752.2194391331.628.939677.20.1926.50.04
    CD16(16)0.1210.5818.940.99322.22100597929.633.142088.10.2125.90.03
    CD16(17)0.1713.3620.043.612687.191352132433.539.517694.90.5419.00.06
    最小值0.124.2012.47.401141.4014212617.77.1136.923.30.195.910.03
    最大值0.6913.421.343.612687.191352132433.539.542099.50.7226.50.21
    平均值0.348.0718.725.25673.1062359727.120.718962.50.4115.90.09
    注:Pd组(PPGE)=Rh+Pt+Pd+Au,Ir组(IPGE)=Os+Ir+Ru,δPt=$ {{{\rm{Pt}}}_{{\rm{N}}}} $/$ {\sqrt{{{\rm{Rh}}}_{{\rm{N}}}\cdot{{\rm{Pd}}}_{{\rm{N}}}} }$,δPd=$ {{{\rm{Pd}}}_{{\rm{N}}}} $/$ {\sqrt{{\rm{Pt}}_{{\rm{N}}}\cdot{\rm{Au}}_{{\rm{N}}}} }$,RhN、PtN、PdN、AuN均为C1球粒陨石标准化值;C1球粒陨石数据引自文献[29]。
    下载: 导出CSV

    表  4  富钴结壳与其他地质体铂族元素富集倍数

    Tab.  4  The enrichment factors of platinum group elements (PGE) in cobalt-rich crusts and other geological bodies

    富集倍数OsIrRuRhPtPdPGE
    富钴结壳0.348.0718.725.25673.101.77
    洋壳0.0040.021.00.22.30.23.72
    地壳111151019
    海山玄武岩0.81.172.631.456.411.9264.33
    海水6.80.12.5794959196
    热液硫化物0.81.83.55.59.922
    原始地幔3.43.250.97.13.924
    f(洋壳)844031912624716167
    f(地壳)0.38.119251130.3133
    f(海山玄武岩)0.46.97.118101.69.7
    f(海水)0.05817.50.32120.053.2
    f(热液硫化物)10.1107.21030.3128
    f(原始地幔)0.102.53.728800.826
    注:“−”表示无数据;海水铂族元素单位为fg/g,其他单位均为ng/g;富钴结壳数据为表3中平均值;地壳数据引自文献[5];原始地幔数据引自文献[29];洋壳数据引自文献[30];海山玄武岩数据引自文献[31];海水数据引自文献[32];热液硫化物数据引自文献[33]。
    下载: 导出CSV

    表  5  富钴结壳元素之间相关系数矩阵表

    Tab.  5  Correlation matrix of elements in cobalt-rich crusts

    元素MnFeCaOP2O5Al2O3Na2OK2OMgOTiO2CoCuNiBaSrRhPtPGE
    Mn1
    Fe0.2331
    CaO–0.389–0.927**1
    P2O5–0.431–0.917**0.998**1
    Al2O3–0.3820.708**–0.659**–0.630**1
    Na2O0.754**0.562*–0.536*–0.556*–0.1051
    K2O–0.1510.662**–0.736**–0.719**0.924**–0.1091
    MgO0.637**0.722**–0.853**–0.874**0.4260.593*0.605*1
    TiO20.3740.288–0.539*–0.553*0.243–0.0560.554*0.531*1
    Co0.936**0.447–0.623**–0.653**–0.0930.774**0.1360.805**0.4721
    Cu–0.198–0.718**0.544*0.525*–0.286–0.742**–0.095–0.3170.275–0.3371
    Ni0.813**-0.2660.0770.021–0.640**0.366–0.3800.3250.2710.625**0.3321
    Ba–0.058–0.673**0.493*0.487*–0.388–0.624**–0.162–0.3480.394–0.1720.844**0.3101
    Sr0.491*–0.4740.513*0.487*–0.893**0.301–0.840**–0.268–0.2930.2380.0380.598*0.2381
    Rh–0.458–0.771**0.655**0.658**–0.208–0.874**–0.098–0.534*0.103–0.535*0.904**0.0260.847**0.0041
    Pt–0.524*–0.748**0.631**0.640**–0.153–0.910**–0.057–0.558*0.090–0.590*0.877**–0.0660.823**–0.0600.976**1
    PGE–0.520*–0.749**0.632**0.641**–0.157–0.909**–0.059–0.558*0.093–0.587*0.879**–0.0620.826**–0.0560.978**1.000**1
    注:相关系数为Pearson简单系数,n=17;**表示置信度P为99%;*表示置信度P为95%。
    下载: 导出CSV
  • [1] Hein J R, Conrad T, Mizell K, et al. Controls on ferromanganese crust composition and reconnaissance resource potential, Ninetyeast Ridge, Indian Ocean[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2016, 110: 1−19. doi: 10.1016/j.dsr.2015.11.006
    [2] Halbach P E, Jahn A, Cherkashov G. Marine Co-rich ferromanganese crust deposits: description and formation, occurrences and distribution, estimated world-wide resources[M]//Sharma R. Deep-Sea Mining. Cham: Springer, 2017: 65−141.
    [3] Astakhova N V. Noble metals in ferromanganese crusts from Marginal Seas of the Northwest Pacific[J]. Oceanology, 2017, 57(4): 558−567. doi: 10.1134/S0001437017040014
    [4] Marino E, González F J, Somoza L, et al. Strategic and rare elements in Cretaceous-Cenozoic cobalt-rich ferromanganese crusts from seamounts in the Canary Island Seamount Province (northeastern tropical Atlantic)[J]. Ore Geology Reviews, 2017, 87: 41−61. doi: 10.1016/j.oregeorev.2016.10.005
    [5] 刘英俊, 曹励明. 元素地球化学导论[M]. 北京: 地质出版社, 1987: 1−281.

    Liu Yingjun, Cao Liming. Introduction to Elemental Geochemistry[M]. Beijing: Geology Press, 1987: 1−281.
    [6] Koschinsky A, Hein J R, Kraemer D, et al. Platinum enrichment and phase associations in marine ferromanganese crusts and nodules based on a multi-method approach[J]. Chemical Geology, 2020, 539: 119426. doi: 10.1016/j.chemgeo.2019.119426
    [7] 王登红, 骆耀南, 屈文俊, 等. 中国西南铂族元素矿床地质、地球化学与找矿[M]. 北京: 地质出版社, 2007: 1-335.

    Wang Denghong, Luo Yaonan, Qu Wenjun, et al. Geology, Geochemistry and Exploration of PGE Deposits in SW China[M]. Beijing: Geology Press, 2007: 1−335.
    [8] Josso P, Rushton J, Lusty P, et al. Late Cretaceous and Cenozoic paleoceanography from North-east Atlantic ferromanganese crust microstratigraphy[J]. Marine Geology, 2020, 422: 106122. doi: 10.1016/j.margeo.2020.106122
    [9] Sousa I M C, Santos R V, Koschinsky A, et al. Mineralogy and chemical composition of ferromanganese crusts from the Cruzeiro do Sul Lineament-Rio Grande Rise, South Atlantic[J]. Journal of South American Earth Sciences, 2021, 108: 103207. doi: 10.1016/j.jsames.2021.103207
    [10] Azami K, Hirano N, Machida S, et al. Rare earth elements and yttrium (REY) variability with water depth in hydrogenetic ferromanganese crusts[J]. Chemical Geology, 2018, 493: 224−233. doi: 10.1016/j.chemgeo.2018.05.045
    [11] Josso P, Parkinson I, Horstwood M, et al. Improving confidence in ferromanganese crust age models: a composite geochemical approach[J]. Chemical Geology, 2019, 513: 108−119. doi: 10.1016/j.chemgeo.2019.03.003
    [12] Jiang Xiaodong, Sun Xiaoming, Chou Y M, et al. Geochemistry and origins of carbonate fluorapatite in seamount Fe-Mn crusts from the Pacific Ocean[J]. Marine Geology, 2020, 423: 106135. doi: 10.1016/j.margeo.2020.106135
    [13] Maeno M Y, Ohashi H, Yonezu K, et al. Sorption behavior of the Pt (II) complex anion on manganese dioxide (δ-MnO2): a model reaction to elucidate the mechanism by which Pt is concentrated into a marine ferromanganese crust[J]. Mineralium Deposita, 2016, 51(2): 211−218. doi: 10.1007/s00126-015-0599-7
    [14] Josso P, Lusty P, Chenery S, et al. Controls on metal enrichment in ferromanganese crusts: temporal changes in oceanic metal flux or phosphatisation?[J]. Geochimica et Cosmochimica Acta, 2021, 308: 60−74. doi: 10.1016/j.gca.2021.06.002
    [15] Halbach P, Sattler C D, Teichmann F, et al. Cobalt-rich and platinum-bearing manganese crust deposits on seamount: nature, formation, and metal potential[J]. Marine Mining, 1989, 8(1): 23−29.
    [16] 姚德, 张丽洁, Wiltshire J C, 等. 富Co铁锰结壳铂族元素与铼−锇同位素组成及其意义[J]. 海洋地质与第四纪地质, 2002, 22(3): 53−58. doi: 10.16562/j.cnki.0256-1492.2002.03.008

    Yao De, Zhang Lijie, Wiltshire J C, et al. PGE and Re-Os isotope compositions and their significances of Co-rich ferromanganese crusts[J]. Marine Geology & Quaternary Geology, 2002, 22(3): 53−58. doi: 10.16562/j.cnki.0256-1492.2002.03.008
    [17] 孙晓明, 薛婷, 何高文, 等. 西太平洋海底海山富钴结壳惰性气体同位素组成及其来源[J]. 岩石学报, 2006, 22(9): 2331−2340. doi: 10.3321/j.issn:1000-0569.2006.09.008

    Sun Xiaoming, Xue Ting, He Gaowen, et al. Noble gases isotopic compositions and sources of cobalt-rich crusts from West Pacific Ocean seamounts[J]. Acta Petrologica Sinica, 2006, 22(9): 2331−2340. doi: 10.3321/j.issn:1000-0569.2006.09.008
    [18] 赵宏樵, 赵建如. 富钴结壳中贵金属元素的特征[J]. 现代地质, 2007, 21(4): 654−658. doi: 10.3969/j.issn.1000-8527.2007.04.010

    Zhao Hongqiao, Zhao Jianru. Characteristics of noble metal elements in cobalt-rich crusts[J]. Geoscience, 2007, 21(4): 654−658. doi: 10.3969/j.issn.1000-8527.2007.04.010
    [19] 任江波, 何高文, 姚会强, 等. 西太平洋海山富钴结壳的稀土和铂族元素特征及其意义[J]. 地球科学, 2016, 41(10): 1745−1757.

    Ren Jiangbo, He Gaowen, Yao Huiqiang, et al. Geochemistry and significance of REE and PGE of the cobalt-rich crusts from West Pacific Ocean seamounts[J]. Earth Science, 2016, 41(10): 1745−1757.
    [20] 卜文瑞. 太平洋富钴结壳稀有气体地球化学特征及其成矿指示意义[D]. 青岛: 中国科学院海洋研究所, 2008: 1−164.

    Bu Wenrui. Noble gas geochemistry of ferromanganese crusts from Pacific Ocean and their significations for the formation of crusts[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences, 2008: 1−164.
    [21] Qi Liang, Zhou Meifu, Wang C Y. Determination of low concentrations of platinum group elements in geological samples by ID-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2004, 19(10): 1335−1339. doi: 10.1039/b400742e
    [22] Qi Liang, Zhou Meifu, Wang C Y, et al. Evaluation of a technique for determining Re and PGEs in geological samples by ICP-MS coupled with a modified Carius tube digestion[J]. Geochemical Journal, 2007, 41(6): 407−414. doi: 10.2343/geochemj.41.407
    [23] Hein J R, Koschinsky A, Bau M, et al. Cobalt-rich ferromanganese crusts in the Pacific[M]//Cronan D S. Handbook of Marine Mineral Deposits. Boca Raton: CRC Press, 2000: 239−279.
    [24] Hein J R. Cobalt-rich ferromanganese crusts: global distribution, composition, origin and research activities[C]//Minerals Other than Polymetallic Nodules of the International Seabed Area. Kingston Jamaica: International Seabed Authority, 2004: 188−256.
    [25] Koschinsky A, Stascheit A, Bau M, et al. Effects of phosphatization on the geochemical and mineralogical composition of marine ferromanganese crusts[J]. Geochimica et Cosmochimica Acta, 1997, 61(19): 4079−4094. doi: 10.1016/S0016-7037(97)00231-7
    [26] 杨胜雄, 龙晓军, 祁奇, 等. 西太平洋富钴结壳矿物学和地球化学特征——以麦哲伦海山和马尔库斯–威克海山富钴结壳为例[J]. 中国海洋大学学报, 2016, 46(2): 105−116.

    Yang Shengxiong, Long Xiaojun, Qi Qi, et al. The mineralogical and geochemical characteristics of Co-rich crusts from the western Pacific: taking the Co-rich crusts from Magellan and Marcus-wake seamounts as an example[J]. Periodical of Ocean University of China, 2016, 46(2): 105−116.
    [27] 潘家华, 刘淑琴, 杨忆, 等. 西太平洋海山磷酸盐的常量、微量和稀土元素地球化学研究[J]. 地质论评, 2002, 48(5): 534−541. doi: 10.3321/j.issn:0371-5736.2002.05.012

    Pan Jiahua, Liu Shuqin, Yang Yi, et al. Research on geochemical characteristics of major, trace and rare-earth elements in phosphates from the West Pacific seamounts[J]. Geological Review, 2002, 48(5): 534−541. doi: 10.3321/j.issn:0371-5736.2002.05.012
    [28] Bonatti E, kraemer T, Rydell H. Classification and genesis of submarine iron-manganese deposits[M]//Horn D R. Ferromanganese Deposits on the Ocean Floor. Washington: National Science Foundation, 1972: 149−166.
    [29] McDonough W F, Sun S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4): 223−253
    [30] Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell Scientific Press, 1985: 1−312.
    [31] 孙晓明, 薛婷, 何高文, 等. 太平洋海山富钴结壳铂族元素(PGE)和Os同位素地球化学及其成因意义[J]. 岩石学报, 2006, 22(12): 3014−3026. doi: 10.3321/j.issn:1000-0569.2006.12.017

    Sun Xiaoming, Xue Ting, He Gaowen, et al. Platinum group elements (PGE) and Os isotopic geochemistry of ferromanganese crusts from Pacific Ocean seamounts and their constraints on genesis[J]. Acta Petrologica Sinica, 2006, 22(12): 3014−3026. doi: 10.3321/j.issn:1000-0569.2006.12.017
    [32] Glasby G P. Incorporation of transition and platinum group elements (PGE) in Co-rich Mn crusts at Afanasiy-Nikitin Seamount (AFS) in the equatorial S Indian Ocean[J]. Resource Geology, 2010, 60(2): 212−215. doi: 10.1111/j.1751-3928.2010.00128.x
    [33] Pašava J, Vymazalová A, Petersen S, et al. PGE distribution in massive sulfides from the pacmanus hydrothermal field, eastern Manus Basin, Papua New Guinea: implications for PGE enrichment in some ancient volcanogenic massive sulfide deposits[J]. Mineralium Deposita, 2004, 39(7): 784−792. doi: 10.1007/s00126-004-0442-z
    [34] 何高文, 孙晓明, 杨胜雄, 等. 东太平洋CC区多金属结核铂族元素(PGE)地球化学及其意义[J]. 矿床地质, 2006, 25(2): 164−174. doi: 10.3969/j.issn.0258-7106.2006.02.006

    He Gaowen, Sun Xiaoming, Yang Shengxiong, et al. Platinum group elements (PGE) geochemistry of polymetallic nodules in CC zone, East Pacific Ocean[J]. Mineral Deposits, 2006, 25(2): 164−174. doi: 10.3969/j.issn.0258-7106.2006.02.006
    [35] Jiang Shaoyong, Yang Jinghong, Ling Hongfei, et al. Re-Os isotopes and PGE geochemistry of black shales and intercalated Ni-Mo polymetallic sulfide bed from the Lower Cambrian Niutitang Formation, South China[J]. Progress in Natural Science, 2003, 13(10): 788−794. doi: 10.1080/10020070312331344440
    [36] 何高文, 赵祖斌, 朱克超, 等. 西太平洋富钴结壳资源[M]. 北京: 地质出版社, 2001: 1−92.

    He Gaowen, Zhao Zubin, Zhu Kechao, et al. Cobalt-Rich Crust Resources in the West Pacific[M]. Beijing: Geology Press, 2001: 1−92.
    [37] Koschinsky A, Halbach P. Sequential leaching of marine ferromanganese precipitates: genetic implications[J]. Geochimica et Cosmochimica Acta, 1995, 59(24): 5113−5132. doi: 10.1016/0016-7037(95)00358-4
    [38] Koschinsky A, Hein J R. Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation[J]. Marine Geology, 2003, 198(3/4): 331−351.
    [39] 高晶晶, 刘季花, 张辉, 等. 太平洋海山富钴结壳中铂族元素赋存状态与富集机理[J]. 海洋学报, 2019, 41(8): 115−124.

    Gao Jingjing, Liu Jihua, Zhang Hui, et al. Occurrence phase and enrichment mechanism of platinum group elements in the Pacific cobalt-rich crusts[J]. Haiyang Xuebao, 2019, 41(8): 115−124.
    [40] 高晶晶, 刘季花, 张辉, 等. 太平洋徐福海山富钴结壳稀土元素和铂族元素赋存状态研究[J]. 海洋学报, 2021, 43(11): 77−87.

    Gao Jingjing, Liu Jihua, Zhang Hui, et al. Occurrence phases of rare earth elements and platinum group elements in cobalt-rich crusts from the Seamount Xufu in the Pacific[J]. Haiyang Xuebao, 2021, 43(11): 77−87.
    [41] 任向文, 石学法, 朱爱美, 等. 麦哲伦海山群MK海山富钴结壳稀土元素的赋存相态[J]. 吉林大学学报(地球科学版), 2011, 41(3): 707−714. doi: 10.13278/j.cnki.jjuese.2011.03.039

    Ren Xiangwen, Shi Xuefa, Zhu Aimei, et al. Existing phase of rare earth elements in Co-rich Fe-Mn crusts from seamount MK of Magellan seamount cluster[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(3): 707−714. doi: 10.13278/j.cnki.jjuese.2011.03.039
    [42] 崔迎春, 石学法, 刘季花, 等. 70 Ma以来风尘活动在太平洋铁锰结壳中的记录[J]. 吉林大学学报(地球科学版), 2012, 42(2): 393−399. doi: 10.13278/j.cnki.jjuese.2012.02.024

    Cui Yingchun, Shi Xuefa, Liu Jihua, et al. Records of past 70 Ma dust activities in ferromanganese crusts from Pacific Ocean[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(2): 393−399. doi: 10.13278/j.cnki.jjuese.2012.02.024
    [43] 李江山, 石学法, 刘季花, 等. 古海洋环境演化对富钴结壳稀土元素富集的制约[J]. 中国稀土学报, 2011, 29(5): 622−629.

    Li Jiangshan, Shi Xuefa, Liu Jihua, et al. Constraints of paleoceanographic environmental evolution on REEs enrichment in Co-rich crust[J]. Journal of the Chinese Society of Rare Earths, 2011, 29(5): 622−629.
    [44] 任向文, 刘季花, 石学法, 等. 麦哲伦海山群M海山富钴结壳成因与成矿时代: 来自地球化学和Co地层学的证据[J]. 海洋地质与第四纪地质, 2011, 31(6): 65−74.

    Ren Xiangwen, Liu Jihua, Shi Xuefa, et al. Genesis and ore-forming stages of Co-rich ferromanganese crusts from Seamount M of Magellan Seamounts: evidence from geochemistry and Co chronology[J]. Marine Geology & Quaternary Geology, 2011, 31(6): 65−74.
    [45] 侯晓帆, 王珍岩, 李文建, 等. 西太平洋卡罗琳洋脊CM4海山铁锰结壳矿物学和地球化学特征[J]. 海洋与湖沼, 2020, 51(5): 1118−1126. doi: 10.11693/hyhz20191000193

    Hou Xiaofan, Wang Zhenyan, Li Wenjian, et al. Mineralogy and geochemistry of ferromanganese crusts of Caroline ridge CM4 guyot in the western Pacific[J]. Oceanologia et Limnologia Sinica, 2020, 51(5): 1118−1126. doi: 10.11693/hyhz20191000193
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  217
  • HTML全文浏览量:  70
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-21
  • 修回日期:  2022-11-05
  • 网络出版日期:  2023-04-12
  • 刊出日期:  2023-03-31

目录

    /

    返回文章
    返回