Two leading modes of environmental steering flow in the interannual time scale and their associations with tropical cyclone activity over the western North Pacific
-
摘要: 本文基于中国气象局上海台风研究所整编的热带气旋(Tropical Cyclone, TC)最佳路径资料及美国NCEP/NCAR月平均再分析资料,采用经验正交函数分解、合成分析、相关分析等统计方法,分析了1979−2016年7−9月西北太平洋地区海盆尺度大尺度环境引导气流的年际变化与热带气旋活动之间的联系。结果表明:(1)西北太平洋地区夏季大尺度环境引导气流在年际尺度上存在两个典型模态。其中第一典型模态大尺度环境引导气流呈现经向分布的偶极型环流型,该模态与东部型ENSO密切相关;第二典型模态大尺度环境引导气流呈明显的局地反气旋环流形态,其与中部型ENSO和热带大西洋海温异常紧密关联。(2)大尺度环境引导气流第一典型模态异常年份之间TC活动(生成位置、路径、强度和持续时间)具有显著差异,TC生成空间分布南北差异显著;TC路径尤其西北行和西行盛行路径也具有显著差异。(3)第二典型模态异常年份之间,TC生成位置和路径差异与第一模态呈现显著不同,TC生成位置呈现较为明显的东西向分布,在东南象限TC生成差异尤为显著,TC路径的差异主要体现在西北行和近海转向两类盛行路径。Abstract: Using the tropical cyclone (TC) best track data from the Shanghai Typhoon Research Institute of the China Meteorological Administration (CMA-STI) and the monthly mean reanalysis data of NCEP/NCAR, the interannual variability of the basin-scale large-scale environmental steering flow and the tropical cyclone activity in the western North Pacific (WNP) during peak season from July to September from 1979−2016 are investigated. The results show that: (1) There are two typical modes of summer large-scale environmental steering flow in the WNP at the inter-annual scale. The first typical mode is a dipole circulation with a meridional distribution, which is closely related to the eastern ENSO and the sea-air coupling mode in the WNP region. (2) The TC activity (generation location, tracks, intensity and duration) differs significantly between the two typical interannual mode anomaly years of the large-scale environment steering flow, but the differences have distinctly different characteristics for the two typical inter-annual modes. (3) The spatial distribution of TC generation location shows significant differences from north to south between the years of the first typical interannual mode anomalies of large-scale environment steering flow; the TC tracks, especially the northwestward and westward prevailing tracks, also have significant differences, and their average duration and intensity also show their corresponding significant differences. In the second major interannual mode anomaly years, the TC generation locations show significant east-west distribution especially in the southeast quadrant, and the differences in TC tracks are mainly in the northwestward and offshore steering prevailing tracks, and their mean durations and intensities also show significant differences.
-
图 2 EOF第一、第二主要年际模态时间系数与海表温度相关系数的空间分布和引导气流EOF第一、第二主要年际模态(绿色矢量箭头)
打点为通过90%显著性检验
Fig. 2 Spatial distribution of correlation coefficent between time coefficient and sea surface temperature of EOF1 and EOF2 and steering flow of EOF1 and EOF2 (green vectors)
Dots denote areas that are significant at the 95% confidence level
图 3 EOF第一、第二主要年际模态时间系数与赤道西太平洋(5°S~5°N,130°~160°E)(a,b)、赤道中东太平洋(10°S~10°N,100°W~180°)(c,d)、赤道东太平洋(10°S~10°N,80°~120°W)(e,f)、赤道大西洋(10°S~20°N,70°W~0°)(g,h)7−9月海表温度进行相关性分析
显著性:*代表>90%、**代表>95%、***代表>99%;海表温度为标准化温度
Fig. 3 Correlation analysis between time coefficient of EOF1 and EOF2 and sea surface temperature in the equatorial western Pacific (5°S−5°N, 130°−160°E) (a, b), the equatorial central and eastern Pacific (10°S−10°N, 100°W−180°) (c, d), the equatorial eastern Pacific (10°S−10°N, 80°−120°W) (e, f) and the equatorial Atlantic (10°S−20°N, 70°W−0°) (g, h)
Significance: * represents >90%, ** represents >95%, *** represents >99%; the sea surface temperature is the standardized temprature
图 4 EOF第一(左侧)、第二(右侧)主要年际模态下正负异常年前一年秋季(SON)、冬季(DJF),同年春季(MAM)、夏季(JJA)海表温度及850 hPa风矢量场(黑色矢量箭头,单位:m/s)合成差异
Fig. 4 Sea surface temperature and 850 hPa winds (black vectors, unit: m/s) composite differences between positive and negative years of EOF1 (left) and EOF2 (right) from the previous fall (SON) and winter (DJF), concurrent spring (MAM) and summer (JJA)
图 8 EOF第一、第二主要年际模态正负异常年涡度场(单位:10−6 s−1)叠加850 hPa风矢量场(单位:m/s)(a,b)、200~850 hPa垂直风切变(c,d,单位:m/s)、700 hPa相对湿度(e,f) 、500 hPa高度处垂直速度(g,h,单位:10−2 Pa/s)差异
绿色等值线为平均路径密度;打点为通过95%显著性检验
Fig. 8 Difference of vorticity fields (unit: 10−6 s−1) superposition 850 hPa wind vector field (unit: m/s) (a, b), vertical wind shear (unit: m/s) between 200−850 hPa (c, d), relative humidity of 700 hPa (e, f), and vertical velocity of 500 hPa height (g, h, unit: 10−2 Pa/s) between positive and negative years of EOF1 and EOF2
Green counters are the density of TC tracks; dots are the value that is significant at a 95% confidence level
表 1 EOF第一、第二主要年际模态正负异常年年份
Tab. 1 Positive and negative anomaly years of EOF1 and EOF2
EOF第一主要年际模态 正异常年 1988 1994 1998 2000 2001 2008 2010 2011 2012 负异常年 1980 1982 1983 1986 1987 1991 1993 2014 2015 EOF第二主要年际模态 正异常年 1983 1985 1988 1995 1998 2003 2008 2010 2014 负异常年 1982 1986 1994 1997 2002 2006 2012 2015 2016 表 2 两个模态正负异常年各类年TC频数差值
Tab. 2 Annual TC frequency difference between positive and negative years of EOF1 and EOF2
模态 Type A Type B Type C EOF1 −1.33** 1.78* 0.78 EOF2 −1.78** 0 −1.33 注:*代表显著性大于90%,**代表显著性大于95%。 表 3 两个模态正负异常年TC特征差值
Tab. 3 TC characteristic difference between positive and negative years of EOF1 and EOF2
个数 生命周期/h 初始纬度/(°) 初始经度/(°) PDI/(106 m3·s−3) 最大风速/(m·s−1) 平均风速/(m·s−1) EOF1 1.22 −38.39** 2.99*** −4.60 −6.06** −6.64*** −3.30*** EOF2 −3.11* −44.08*** 1.17 −7.80** −9.51*** −3.34* −1.50 注:*代表显著性大于90%;**代表显著性大于95%;***代表显著性大于99%;初始纬度和经度以北纬和东经为基准。 -
[1] 伍荣生. 现代天气学原理[M]. 北京: 高等教育出版社, 1999.Wu Rongsheng. Principles of Modern Synoptic Meteorology[M]. Beijing: Higher Education Press, 1999. [2] Chan J C L. The physics of tropical cyclone motion[J]. Annual Review of Fluid Mechanics, 2005, 37(1): 99−128. doi: 10.1146/annurev.fluid.37.061903.175702 [3] Wu Liguang, Wang Bin, Geng Shuqin. Growing typhoon influence on east Asia[J]. Geophysical Research Letters, 2005, 32(18): L18703. [4] 王斌, Elsberry R L, 王玉清, 等. 热带气旋运动的动力学研究进展[J]. 大气科学, 1998, 22(4): 535−547. doi: 10.3878/j.issn.1006-9895.1998.04.15Wang Bin, Elsberry R L, Wang Yuqing, et al. Dynamics in tropical cyclone motion: a review[J]. Chinese Journal of Atmospheric Sciences, 1998, 22(4): 535−547. doi: 10.3878/j.issn.1006-9895.1998.04.15 [5] Wu Liguang, Wang Bin. Assessing impacts of global warming on tropical cyclone tracks[J]. Journal of Climate, 2004, 17(8): 1686−1698. doi: 10.1175/1520-0442(2004)017<1686:AIOGWO>2.0.CO;2 [6] Ritchie E A, Holland G J. Large-scale patterns associated with tropical cyclogenesis in the western Pacific[J]. Monthly Weather Review, 1999, 127(9): 2027−2043. doi: 10.1175/1520-0493(1999)127<2027:LSPAWT>2.0.CO;2 [7] 王慧, 丁一汇, 何金海. 西北太平洋夏季风的变化对台风生成的影响[J]. 气象学报, 2006, 64(3): 345−356. doi: 10.3321/j.issn:0577-6619.2006.03.009Wang Hui, Ding Yihui, He Jinhai. Influence of western North Pacific summer monsoon changes on typhoon genesis[J]. Acta Meteorologica Sinica, 2006, 64(3): 345−356. doi: 10.3321/j.issn:0577-6619.2006.03.009 [8] Liu K S, Chan J C L. Interdecadal variability of western North Pacific tropical cyclone tracks[J]. Journal of Climate, 2008, 21(17): 4464−4476. doi: 10.1175/2008JCLI2207.1 [9] 赵海坤. 全球变暖背景下西北太平洋热带气旋活动变化机理研究[D]. 南京: 南京信息工程大学, 2012.Zhao Haikun. Study on the mechanism of tropical cyclone activity change over the western North Pacific under the backgrourld of global warming[D]. Nanjing: Nanjing University of Information Science and Technology, 2012. [10] Zhao Haikun, Wu Liguang, Zhou Weican. Assessing the influence of the ENSO on tropical cyclone prevailing tracks in the western North Pacific[J]. Advances in Atmospheric Sciences, 2010, 27(6): 1361−1371. doi: 10.1007/s00376-010-9161-9 [11] Zhao Haikun, Wu Liguang, Wang Ruifang. Decadal variations of intense tropical cyclones over the western North Pacific during 1948−2010[J]. Advances in Atmospheric Sciences, 2014, 31(1): 57−65. doi: 10.1007/s00376-013-3011-5 [12] Zhou Xingyan, Lu Riyu, Chen Guanghua. Impact of interannual variation of synoptic disturbances on the tracks and landfalls of tropical cyclones over the western North Pacific[J]. Advances in Atmospheric Sciences, 2018, 35(12): 1469−1477. doi: 10.1007/s00376-018-8055-0 [13] 苏源, 吴立广. 多时间尺度环流对热带气旋海棠(0505)路径的影响[J]. 气象科学, 2011, 31(3): 237−246. doi: 10.3969/j.issn.1009-0827.2011.03.001Su Yuan, Wu Liguang. Analysis of the multi-time scale circulation influences on the track of tropical cyclone Haitang (0505)[J]. Journal of the Meteorological Sciences, 2011, 31(3): 237−246. doi: 10.3969/j.issn.1009-0827.2011.03.001 [14] Clark J D, Chu P S. Interannual variation of tropical cyclone activity over the central North Pacific[J]. Journal of the Meteorological Society of Japan, 2002, 80(3): 403−418. [15] 何鹏程, 江静. PDO对西北太平洋热带气旋活动与大尺度环流关系的影响[J]. 气象科学, 2011, 31(3): 266−273. doi: 10.3969/j.issn.1009-0827.2011.03.004He Pengcheng, Jiang Jing. Effect of PDO on the relationships between large scale circulation and tropical cyclone activity over the western North Pacific[J]. Journal of the Meteorological Sciences, 2011, 31(3): 266−273. doi: 10.3969/j.issn.1009-0827.2011.03.004 [16] Li Wenhong, Li Laifang, Deng Yi, et al. Impact of the interdecadal pacific oscillation on tropical cyclone activity in the North Atlantic and eastern North Pacific[J]. Scientific Reports, 2015, 5: 12358. doi: 10.1038/srep12358 [17] Yu Cai, Han Xiang, Zhao Haikun, et al. Enhanced predictability of rapidly intensifying tropical cyclones over the western North Pacific associated with snow depth changes over the Tibetan Plateau[J]. Journal of Climate, 2022, 35(7): 2093−2110. [18] Camargo S J, Sobel A H. Western North Pacific tropical cyclone intensity and ENSO[J]. Journal of Climate, 2005, 18(15): 2996−3006. doi: 10.1175/JCLI3457.1 [19] Zhao Haikun, Wu Liguang, Zhou Weican. Interannual changes of tropical cyclone intensity in the western North Pacific[J]. Journal of the Meteorological Society of Japan, 2011, 89(3): 243−253. [20] Zhao Haikun, Klotzbach P J, Chen Shaohua. Dominant influence of ENSO-like and global sea surface temperature patterns on changes in prevailing boreal summer tropical cyclone tracks over the western North Pacific[J]. Journal of Climate, 2020, 33(22): 9551−9565. doi: 10.1175/JCLI-D-19-0774.1 [21] Zhan Ruifen, Wang Yuqing, Lei Xiaotu. Contributions of ENSO and East Indian Ocean SSTA to the interannual variability of Northwest Pacific tropical cyclone frequency[J]. Journal of Climate, 2011, 24(2): 509−521. doi: 10.1175/2010JCLI3808.1 [22] Zhao Haikun, Wu Liguang. Inter-decadal shift of the prevailing tropical cyclone tracks over the western North Pacific and its mechanism study[J]. Meteorology and Atmospheric Physics, 2014, 125(1/2): 89−101. [23] Wang Chao, Wang Bin, Wu Liguang. A region-dependent seasonal forecasting framework for tropical cyclone genesis frequency in the western North Pacific[J]. Journal of Climate, 2019, 32(23): 8415−8435. doi: 10.1175/JCLI-D-19-0006.1 [24] Wang Chao, Wang Bin. Tropical cyclone predictability shaped by western Pacific subtropical high: integration of trans-basin sea surface temperature effects[J]. Climate Dynamics, 2019, 53(5/6): 2697−2714. [25] Wang Bin, Chan J C L. How strong ENSO events affect tropical storm activity over the western North Pacific[J]. Journal of Climate, 2002, 15(13): 1643−1658. doi: 10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2 [26] 谢佩妍, 陶丽, 李俊徽, 等. 西北太平洋热带气旋在ENSO发展和衰减年的路径变化[J]. 大气科学, 2018, 42(5): 987−999.Xie Peiyan, Tao Li, Li Junhui, et al. Variation of tropical cyclone track in the western North Pacific during ENSO developing and decaying years[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(5): 987−999. [27] Wang Bin, Wu Renguang, Fu X. Pacific-East Asian teleconnection: how does ENSO affect East Asian climate?[J]. Journal of Climate, 2000, 13(9): 1517−1536. doi: 10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2 [28] Zhang Renhe, Min Qingye, Su Jingzhi. Impact of El Niño on atmospheric circulations over East Asia and rainfall in China: role of the anomalous western North Pacific anticyclone[J]. Science China Earth Sciences, 2017, 60(6): 1124−1132. doi: 10.1007/s11430-016-9026-x [29] 李慧敏, 徐海明, 李智玉. 厄尔尼诺年西北太平洋异常反气旋的年际变化特征及其影响[J]. 气象学报, 2017, 75(4): 581−595. doi: 10.11676/qxxb2017.042Li Huimin, Xu Haiming, Li Zhiyu. Inter-annual variation of the western North Pacific anomalous anticyclone during El Niño years and its impact[J]. Acta Meteorologica Sinica, 2017, 75(4): 581−595. doi: 10.11676/qxxb2017.042 [30] 杜新观, 余锦华. ENSO发展年与衰减年夏季环境要素对热带气旋生成频数变化的贡献[J]. 热带气象学报, 2020, 36(2): 244−253. doi: 10.16032/j.issn.1004-4965.2020.024Du Xinguan, Yu Jinhua. Contribution of environmental factors to the change of tropical cyclone frequency in the summer of enso developing and decaying years[J]. Journal of Tropical Meteorology, 2020, 36(2): 244−253. doi: 10.16032/j.issn.1004-4965.2020.024 [31] Camargo S J, Robertson A W, Gaffney S J, et al. Cluster analysis of typhoon tracks. Part I: general properties[J]. Journal of Climate, 2007, 20(14): 3635−3653. doi: 10.1175/JCLI4188.1 [32] Zhao Haikun, Lu Ying, Jiang Xianan, et al. A statistical intra-seasonal prediction model of extended boreal summer western North Pacific tropical cyclone genesis[J]. Journal of Climate, 2022, 35(8): 2459−2478. [33] Ying Ming, Zhang Wei, Yu Hui, et al. An overview of the China Meteorological Administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2): 287−301. doi: 10.1175/JTECH-D-12-00119.1 [34] Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society, 1996, 77(3): 437−472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 [35] Rayner N A, Parker D E, Horton E B, et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D14): 4407. doi: 10.1029/2002JD002670 [36] 董克勤, 刘治军. 台风路径与各等压面上基本气流的关系[J]. 气象学报, 1965, 35(2): 132−137. doi: 10.11676/qxxb1965.016Dong Keqin, Liu Zhijun. The relationship between the typhoon track and the basic steering flow on each isobaric surface[J]. Acta Meteorol Sin, 1965, 35(2): 132−137. doi: 10.11676/qxxb1965.016 [37] George J E, Gray W M. Tropical cyclone motion and surrounding parameter relationships[J]. Journal of Applied Meteorology, 1976, 15(12): 1252−1264. doi: 10.1175/1520-0450(1976)015<1252:TCMASP>2.0.CO;2 [38] Chan J C L, Gray W M. Tropical cyclone movement and surrounding flow relationships[J]. Monthly Weather Review, 1982, 110(10): 1354−1374. doi: 10.1175/1520-0493(1982)110<1354:TCMASF>2.0.CO;2 [39] Gray W M. Summary of ONR sponsored tropical cyclone motion and future plans[R]. Monterey: Naval Postgraduate School, 1982. [40] North G R, Bell T L, Cahalan R F, et al. Sampling errors in the estimation of empirical orthogonal functions[J]. Monthly Weather Review, 1982, 110(7): 699−706. doi: 10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2 [41] Yu Jinhua, Zheng Yingqing, Wu Qishu, et al. K-means clustering for classification of the northwestern Pacific tropical cyclone tracks[J]. Journal of Tropical Meteorology, 2016, 22(2): 127−135. [42] Wang Chunzai, Li Chunxiang, Mu Mu, et al. Seasonal modulations of different impacts of two types of ENSO events on tropical cyclone activity in the western North Pacific[J]. Climate Dynamics, 2013, 40(11/12): 2887−2902. [43] Roeckner E, Arpe K, Bengtsson L, et al. The atmospheric general circulation model ECHAM-4: model description and simulation of present-day climate[R]. Hamburg: Max-Planck-Institut fuer Meteorologie, 1996: 90. [44] Emanuel K. Increasing destructiveness of tropical cyclones over the past 30 years[J]. Nature, 2005, 436(7051): 686−688. doi: 10.1038/nature03906 [45] Li R C Y, Zhou Wen, Shun Chiming, et al. Change in destructiveness of landfalling tropical cyclones over China in recent decades[J]. Journal of Climate, 2017, 30(9): 3367−3379. doi: 10.1175/JCLI-D-16-0258.1