留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

安达曼海中尺度涡季节变化分析

林圳涛 谢玲玲 黄润琪 白鹏

林圳涛,谢玲玲,黄润琪,等. 安达曼海中尺度涡季节变化分析[J]. 海洋学报,2023,45(4):1–16 doi: 10.12284/hyxb2023035
引用本文: 林圳涛,谢玲玲,黄润琪,等. 安达曼海中尺度涡季节变化分析[J]. 海洋学报,2023,45(4):1–16 doi: 10.12284/hyxb2023035
Lin Zhentao,Xie Lingling,Huang Runqi, et al. Seasonal variation of mesoscale eddies in the Andaman Sea[J]. Haiyang Xuebao,2023, 45(4):1–16 doi: 10.12284/hyxb2023035
Citation: Lin Zhentao,Xie Lingling,Huang Runqi, et al. Seasonal variation of mesoscale eddies in the Andaman Sea[J]. Haiyang Xuebao,2023, 45(4):1–16 doi: 10.12284/hyxb2023035

安达曼海中尺度涡季节变化分析

doi: 10.12284/hyxb2023035
基金项目: 国家自然科学基金(42276019,41776034);广东省高等学校创新团队项目(2019KCXTF021);广东省冲一流专项资金项目(231419012,231819002);广东海洋大学科学博士启动基金(R18001)
详细信息
    作者简介:

    林圳涛(1998-),男,广东省揭阳市人,主要从事物理海洋学研究。E-mail: 1397454768@qq.com

    通讯作者:

    谢玲玲(1983-),女,教授,博士,主要从事物理海洋学研究。 E-mail: xiell@gdou.edu.cn

  • 中图分类号: P731.2

Seasonal variation of mesoscale eddies in the Andaman Sea

  • 摘要: 利用 AVISO 提供的中尺度涡数据集,对1993–2019年间安达曼海中尺度涡的涡旋特征、运动规律及其季节变化机制进行统计分析。结果显示,27年间安达曼海共出现中尺度涡328个,其中反气旋涡(171个)多于气旋涡(157个),主要分布在中西部盆地深水区。涡旋平均寿命为46.4 d,平均半径为111.8 km,平均振幅为4.7 cm,平均最大转速为24.8 cm/s,平均移动速度为15.0 cm/s,反气旋涡的平均半径、振幅和转速均大于气旋涡,而移动速度小于气旋涡。涡旋的半径、振幅和最大转速在其生命周期中都经历了先增大后减小的过程,移动速度则先减小后增大。在季节变化方面,反气旋涡和气旋涡性质冬夏对比呈现“跷跷板”现象,即夏季气旋涡比反气旋涡更多更强更大,冬季则反气旋涡更多更强更大;涡旋分布位置,夏季从北向南呈“气旋–反气旋–气旋”的极性反转交替分布,冬季则与之相反。动力机制分析显示,背景流场涡度可能影响安达曼海涡旋极性交替分布,正(负)涡度背景流利于气旋(反气旋)涡存在。涡旋能量变化机制显示,风强迫是安达曼海涡旋主要能量来源,风场能量输入与涡旋动能的季节变化吻合。
  • 图  1  安达曼海及其邻近海域地形图

    Fig.  1  Topographic map of the Andaman Sea and its adjacent waters

    图  2  安达曼海中尺度涡生成数量(a−c)和消亡数量(d−f)空间分布

    a, d. 总涡旋数,b, e. 反气旋涡,c, f. 气旋涡

    Fig.  2  Spatial distribution of numbers of generating (a−c) and dissipating (d−f) mesoscale eddies in the Andaman Sea

    a, d. the total eddies, b, e. the anticyclonic eddies, c, f. the cyclonic eddies

    图  3  气旋涡和反气旋涡寿命(a)和传播距离(b)分布

    Fig.  3  Statistics of cyclonic eddy and anticyclonic eddy life span (a) and propagating distance (b)

    图  4  涡旋动力特征概率分布

    Fig.  4  Probability distribution of eddy dynamic characteristics

    图  5  显著东移涡旋的生成位置(点)及对应的背景纬向流(a)和在西向背景流中显著东移涡旋的移动轨迹(b)

    Fig.  5  The generation location of significant eastward propagating eddies (dots) and corresponding background zonal flow (a) and the significant eastward propagation trajectories of the cyclonic (orange lines) and anticyclonic (red lines) eddies in the westward background flow (b)

    图  6  反气旋涡和气旋涡南北向移动的概率

    Fig.  6  Probability distribution of meridional propagation of anticyclonic eddies and cyclonic eddies

    图  7  涡旋半径(a)、振幅(b)、转速(c)和移速(d)在归一化周期内的变化

    Fig.  7  Variation of eddy radius (a), amplitude (b), rotating speed (c) and propagation speed (d) in the normalized life span

    图  8  安达曼海涡旋特征的季节分布

    Fig.  8  Seasonal distribution of the eddies characteristics in the Andaman Sea

    图  9  安达曼海中尺度涡空间分布的季节变化

    缩写C1−C6和AC1−AC6指气旋或反气旋聚集发生区

    Fig.  9  Seasonal variations of the locations of mesoscale eddies in the Andaman Sea

    Abbreviations (C1−C6, AC1−AC6) mark the cluster regions of cyclonic or anticyclonic eddies

    图  10  安达曼海夏(a)、冬(b)两季海面流场涡度(彩色)及涡旋生成位置(点)

    实心红点为反气旋涡,实心蓝点为气旋涡。缩写C2 和AC3等指气旋或反气旋聚集发生区

    Fig.  10  Background circulation vorticity (color) and eddy generating locations (dots) of Andaman Sea in summer (a) and winter (b)

    Red and blue dots represent anticyclonic and cyclonic eddies, respectively. Abbreviations (i.e., C2, AC3) mark the cluster regions of cyclonic or anticyclonic eddies

    图  11  北部(a)、中部(b)和南部(c)海盆的斜压能量转化率(BC)、正压能量转化率(BT)和对应的风应力功率(WW)(d)

    Fig.  11  Composite baroclinic (BC) and barotropic (BT) eddy energy conversion rates in the northern basin (a), the middle basin (b) and the southern basin (c), as well as the composite rate of wind stress work (WW) in each basin (d)

    图  12  安达曼海北部(a)、中部(b)、南部(c)海盆空间平均涡动能(EKE)、风应力功率(WW)和能量输入总和(BC+BT+WW)的季节分布

    Fig.  12  Seasonal distribution of averaged eddy kinetic energy (EKE), rate of wind stress work (WW) and energy input (BC+BT+WW) in the northern basin (a), the middle basin (b), the southern basin (c) of the Andaman Sea

    图  13  安达曼海在小于275 km尺度下的风能输入

    Fig.  13  Wind power input to the flow at scales <275 km in the Andaman Sea

    表  1  涡旋纬向运动特征统计

    Tab.  1  Statistical analysis of zonal motion characteristics

    传播方向涡旋极性数量占比平均移动经度空间分布
    西向传播AE14383.63%1.72°整个安达曼海
    CE11673.89%1.61°
    东向传播AE2816.37%0.63°安达曼海东部海域
    CE4126.11%0.71°安达曼海西部海域
    下载: 导出CSV

    表  2  全球及安达曼海周边海域中尺度涡特征

    Tab.  2  Mesoscale eddy characteristics of the world and the waters surrounding the Andaman Sea

    海域海域长宽(南北/东西)/km生命周期/d涡旋振幅/cm涡旋半径/km传播距离/km不同极性数量比/AE∶CE
    全球[35]>1000084.9
    AE > CE
    7.7
    AE < CE
    82.4
    AE > CE
    271.7
    AE > CE
    173245∶179127
    AE < CE
    孟加拉湾[15]2750/160055
    AE < CE
    9.2
    AE < CE
    124
    AE > CE
    336
    AE < CE
    389∶565
    AE < CE
    南海[20]2000/100061.6\132582.5434∶393
    AE > CE
    班达海[13]450/100040
    AE < CE
    4.1
    AE < CE
    116
    AE=CE
    165.3
    AE > CE
    71∶76
    AE < CE
    苏禄海[40]790/600321.8876.6\225∶243
    AE < CE
    安达曼海1100/60046.4
    AE < CE
    4.7
    AE > CE
    111.8
    AE > CE
    231.3
    AE > CE
    171∶157
    AE > CE
    注:\为缺省值,引文未统计或计算该变量。
    下载: 导出CSV
  • [1] 林宏阳, 胡建宇, 郑全安. 南海及西北太平洋卫星高度计资料分析: 海洋中尺度涡统计特征[J]. 台湾海峡, 2012, 31(1): 105−113.

    Lin Hongyang, Hu Jianyu, Zheng Quanan. Satellite altimeter data analysis of the South China Sea and the Northwest Pacific Ocean: statistical features of oceanic mesoscale eddies[J]. Journal of Oceanography in Taiwan Strait, 2012, 31(1): 105−113.
    [2] Richardson P L. Eddy kinetic energy in the North Atlantic from surface drifters[J]. Journal of Geophysical Research: Oceans, 1983, 88(C7): 4355−4367.
    [3] 修树孟, 郑全安, 孙湘平. 中尺度涡诱导的陆架上升流[J]. 水动力学研究与进展(A辑), 2002, 17(1): 61−68.

    Xiu Shumeng, Zheng Quanan, Sun Xiangping. Shelf upwelling induced by mesoscale eddy[J]. Journal of Hydrodynamics (Ser. A), 2002, 17(1): 61−68.
    [4] 李敏, 谢玲玲, 杨庆轩, 等. 湾流区涡旋对海洋垂向混合的影响[J]. 中国科学: 地球科学, 2014, 44(4): 744−752.

    Li Min, Xie Lingling, Yang Qingxuan, et al. Impact of eddies on ocean diapycnal mixing in gulf stream region[J]. Science China Earth Sciences, 2014, 44(4): 744−752.
    [5] 刘金. 南海北部跨陆架输运的变化及中尺度涡对叶绿素的影响[D]. 杭州: 浙江大学, 2019.

    Liu Jin. Variations of cross-shelf volume transports and mesoscale eddy effects on Chlorophyll in the northern South China Sea[D]. Hangzhou: Zhejiang University, 2019.
    [6] Farneti R, Delworth T L, Rosati A J, et al. The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change[J]. Journal of Physical Oceanography, 2010, 40(7): 1539−1557. doi: 10.1175/2010JPO4353.1
    [7] Jian Yongjun, Zhang J, Liu Quansheng, et al. Effect of mesoscale eddies on underwater sound propagation[J]. Applied Acoustics, 2009, 70(3): 432−440. doi: 10.1016/j.apacoust.2008.05.007
    [8] 汤博. 中尺度涡旋的统计特征及其温盐场的反演方法研究[D]. 青岛: 中国科学院大学(中国科学院海洋研究所), 2019.

    Tang Bo. A study on the statistical characteristic of mesoscale eddies and the inversion method of their temperature and salinity fields[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences, 2019.
    [9] Babu M T, Kumar P S, Rao D P. A subsurface cyclonic eddy in the Bay of Bengal[J]. Journal of Marine Research, 1991, 49(3): 403−410. doi: 10.1357/002224091784995846
    [10] Sanilkumar K V, Kuruvilla T V, Jogendranath D, et al. Observations of the Western Boundary Current of the Bay of Bengal from a hydrographic survey during March 1993[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1997, 44(1): 135−145. doi: 10.1016/S0967-0637(96)00036-2
    [11] 郑全安, 张朝贤. 全球尺度海洋学研究对卫星遥感数据的需求[J]. 黄渤海海洋, 1989, 7(2): 53−58.

    Zheng Quanan, Zhang Chaoxian. Requirements of global scale oceanographic study for satellite remote sensing data[J]. Journal of Oceanography of Huanghai & Bohai Seas, 1989, 7(2): 53−58.
    [12] 郑全安, 谢玲玲, 郑志文, 等. 南海中尺度涡研究进展[J]. 海洋科学进展, 2017, 35(2): 131−158. doi: 10.3969/j.issn.1671-6647.2017.02.001

    Zheng Quanan, Xie Lingling, Zheng Zhiwen, et al. Progress in research of mesoscale eddies in the South China Sea[J]. Advances in Marine Science, 2017, 35(2): 131−158. doi: 10.3969/j.issn.1671-6647.2017.02.001
    [13] Chen Baiyang, Xie Lingling, Zheng Quanan, et al. Seasonal variability of mesoscale eddies in the Banda Sea inferred from altimeter data[J]. Acta Oceanologica Sinica, 2020, 39(12): 11−20. doi: 10.1007/s13131-020-1665-2
    [14] Chen Gengxin, Wang Dongxiao, Hou Yijun, et al. The features and interannual variability mechanism of mesoscale eddies in the Bay of Bengal[J]. Continental Shelf Research, 2012: 178−185.
    [15] Cui Wei, Yang Jungang, Ma Yi. A statistical analysis of mesoscale eddies in the Bay of Bengal from 22-year altimetry data[J]. Acta Oceanologica Sinica, 2016, 35(11): 16−27. doi: 10.1007/s13131-016-0945-3
    [16] 常景龙, 邱云, 林新宇, 等. 孟加拉湾中尺度涡的总体特征与季节变化[J]. 应用海洋学学报, 2019, 38(2): 149−158. doi: 10.3969/J.ISSN.2095-4972.2019.02.001

    Chang Jinglong, Qiu Yun, Lin Xinyu, et al. General features and seasonal variation of mesoscale eddies in the Bay of Bengal[J]. Journal of Applied Oceanography, 2019, 38(2): 149−158. doi: 10.3969/J.ISSN.2095-4972.2019.02.001
    [17] 黄挺, 周锋, 田娣, 等. 孟加拉湾及其毗邻海域中尺度涡旋活动的冬、夏季差异[J]. 海洋学研究, 2020, 38(3): 21−30. doi: 10.3969/j.issn.1001-909X.2020.03.003

    Huang Ting, Zhou Feng, Tian Di, et al. Seasonal variations of mesoscale eddy in the Bay of Bengal and its adjacent regions[J]. Journal of Marine Sciences, 2020, 38(3): 21−30. doi: 10.3969/j.issn.1001-909X.2020.03.003
    [18] 周礼英. 基于遥感影像的安达曼海及其邻近海域内波分析[D]. 杭州: 浙江大学, 2018.

    Zhou Liying. Analysis of internal waves in the Andaman Sea and its adjacent waters based on remote sensing images[D]. Hangzhou: Zhejiang University, 2018.
    [19] Schlax M G, Chelton D B. The “growing method” of eddy identification and tracking in two and three dimensions[R]. College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, 2016.
    [20] Chen Gengxin, Hou Yijun, Chu Xiaoqing. Mesoscale eddies in the South China Sea: mean properties, spatiotemporal variability, and impact on thermohaline structure[J]. Journal of Geophysical Research: Ocenas, 2011, 116(C6): C06018.
    [21] Cheng Y H, Ho C R, Zheng Quanan, et al. Statistical characteristics of mesoscale eddies in the North Pacific derived from satellite altimetry[J]. Remote Sensing, 2014, 6(6): 5164−5183. doi: 10.3390/rs6065164
    [22] Huang Runqi, Xie Lingling, Zheng Quanan, et al. Statistical analysis of mesoscale eddy propagation velocity in the South China Sea deep basin[J]. Acta Oceanologica Sinica, 2020, 39(11): 91−102. doi: 10.1007/s13131-020-1678-x
    [23] Nof D. On the β-induced movement of isolated baroclinic eddies[J]. Journal of Physical Oceanography, 1981, 11: 1662−1672. doi: 10.1175/1520-0485(1981)011<1662:OTIMOI>2.0.CO;2
    [24] Cushman-Roisin B, Tang Benyang, Chassignet E P. Westward motion of mesoscale eddies[J]. Journal of Physical Oceanography, 1990, 20(5): 758−768. doi: 10.1175/1520-0485(1990)020<0758:WMOME>2.0.CO;2
    [25] Peng Lin, Chen Ge, Guan Lei, et al. Contrasting westward and eastward propagating mesoscale eddies in the global ocean[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 4504710.
    [26] Chelton D B, Schlax M G, Samelson R M, et al. Global observations of large oceanic eddies[J]. Geophysical Research Letters, 2007, 34(15): L15606.
    [27] Shi Y, Yang D, Feng X, et al. One possible mechanism for eddy distribution in zonal current with meridional shear[J]. Scientific Reports, 2018, 8(1): 1−9.
    [28] Lin X, Qiu Y, Sun D. Thermohaline structures and heat/freshwater transports of mesoscale eddies in the Bay of Bengal observed by Argo and satellite data[J]. Remote Sensing, 2019, 11(24): 2989. doi: 10.3390/rs11242989
    [29] Zhang Z, Zhao W, Qiu B, et al. Anticyclonic eddy sheddings from Kuroshio loop and the accompanying cyclonic eddy in the northeastern South China Sea[J]. Journal of Physical Oceanography, 2017, 47(6): 1243−1259. doi: 10.1175/JPO-D-16-0185.1
    [30] Chen G, Li Y, Xie Q, et al. Origins of eddy kinetic energy in the Bay of Bengal[J]. Journal of Geophysical Research: Oceans, 2018, 123(3): 2097−2115. doi: 10.1002/2017JC013455
    [31] Cheng X, McCreary J P, Qiu B, et al. Intraseasonal-to-semiannual variability of sea-surface height in the eastern, equatorial Indian Ocean and southern Bay of Bengal[J]. Journal of Geophysical Research: Oceans, 2017, 122(5): 4051−4067. doi: 10.1002/2016JC012662
    [32] Rao R R, Kumar M S G, Ravichandran M, et al. Interannual variability of Kelvin wave propagation in the wave guides of the equatorial Indian Ocean, the coastal Bay of Bengal and the southeastern Arabian Sea during 1993–2006[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2010, 57(1): 1−13. doi: 10.1016/j.dsr.2009.10.008
    [33] Ubelmann C, Fu L. Cyclonic eddies formed at the Pacific tropical instability wave fronts[J]. Journal of Geophysical Research: Oceans, 2011, 116(C12).
    [34] Xie L, Zheng Q, Zhang S, et al. The Rossby normal modes in the South China Sea deep basin evidenced by satellite altimetry[J]. International Journal of Remote Sensing, 2018, 39(2): 399−417. doi: 10.1080/01431161.2017.1384591
    [35] Tian F, Wu D, Yuan L, et al. Impacts of the efficiencies of identification and tracking algorithms on the statistical properties of global mesoscale eddies using merged altimeter data[J]. International Journal of Remote Sensing, 2020, 41(8): 2835−2860. doi: 10.1080/01431161.2019.1694724
    [36] 崔伟, 王伟, 马毅, 等. 基于1993—2014年高度计数据的西北太平洋中尺度涡识别和特征分析[J]. 海洋学报, 2017, 39(2): 16−28.

    Cui Wei, Wang Wei, Ma Yi, et al. Identification and analysis of mesoscale eddies in the northwestern Pacific Ocean from 1993–2014 based on altimetry data[J]. Haiyang Xuebao, 2017, 39(2): 16−28.
    [37] 胡冬, 陈希, 毛科峰, 等. 南印度洋中尺度涡统计特征及三维合成结构研究[J]. 海洋学报, 2017, 39(9): 1−14.

    Hu D, Chen X, Mao K, et al. Statistical characteristics and composed three dimensional structures of mesoscale eddies in the South Indian Ocean[J]. Haiyang Xuebao, 2017, 39(9): 1−14.
    [38] Scharffenberg M G, Stammer D. Annual variations of geostrophic currents and eddy kinetic energy inferred from TOPEX/Poseidon and Jason-1 tandem mission data[C]. Orlando: European Organisation for the Exploitation of Meteorological Satellites. 2008: 3−7.
    [39] Qiu B, Chen S. Interannual variability of the North Pacific Subtropical Countercurrent and its associated mesoscale eddy field[J]. Journal of Physical Oceanography, 2010, 40(1): 213−225. doi: 10.1175/2009JPO4285.1
    [40] He Y, Feng M, Xie J, et al. Spatiotemporal variations of mesoscale eddies in the Sulu Sea[J]. Journal of Geophysical Research: Oceans, 2017, 122(10): 7867−7879. doi: 10.1002/2017JC013153
    [41] Hao Z, Xu Z, Feng M, et al. Spatiotemporal variability of mesoscale eddies in the Indonesian Seas[J]. Remote Sensing, 2021, 13(5): 1017. doi: 10.3390/rs13051017
    [42] Zhan P, Subramanian A C, Yao F, et al. Eddies in the Red Sea: A statistical and dynamical study[J]. Journal of Geophysical Research: Oceans, 2014, 119(6): 3909−3925. doi: 10.1002/2013JC009563
    [43] Chen G, Han G. Contrasting short-lived with long-lived mesoscale eddies in the global ocean[J]. Journal of Geophysical Research: Oceans, 2019, 124(5): 3149−3167. doi: 10.1029/2019JC014983
    [44] Chelton D, Schlax M, Samelson R. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011, 91(2): 167−216. doi: 10.1016/j.pocean.2011.01.002
    [45] Rai S, Hecht M, Maltrud M, et al. Scale of oceanic eddy killing by wind from global satellite observations[J]. Science Advances, 2021, 7(28): eabf4920. doi: 10.1126/sciadv.abf4920
    [46] Teng F, Dong C, Ji J, et al. Does the wind stress always damp an oceanic eddy?[J]. Geoscience Letters, 2021, 8(1): 1−6. doi: 10.1186/s40562-020-00170-8
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  513
  • HTML全文浏览量:  196
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-08
  • 修回日期:  2022-08-03
  • 网络出版日期:  2022-10-27
  • 刊出日期:  2023-03-31

目录

    /

    返回文章
    返回