留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

福建三沙湾海域细菌群落结构及其形成机制

王飞鹏 杨靖煜 蔡尊栋 陈锦源 田淼 王路 李荣茂 刘炜 穆景利

王飞鹏,杨靖煜,蔡尊栋,等. 福建三沙湾海域细菌群落结构及其形成机制[J]. 海洋学报,2023,45(3):84–96 doi: 10.12284/hyxb2023034
引用本文: 王飞鹏,杨靖煜,蔡尊栋,等. 福建三沙湾海域细菌群落结构及其形成机制[J]. 海洋学报,2023,45(3):84–96 doi: 10.12284/hyxb2023034
Wang Feipeng,Yang Jingyu,Cai Zundong, et al. Bacterial community structure and assembly mechanisms in Sansha Bay, Fujian[J]. Haiyang Xuebao,2023, 45(3):84–96 doi: 10.12284/hyxb2023034
Citation: Wang Feipeng,Yang Jingyu,Cai Zundong, et al. Bacterial community structure and assembly mechanisms in Sansha Bay, Fujian[J]. Haiyang Xuebao,2023, 45(3):84–96 doi: 10.12284/hyxb2023034

福建三沙湾海域细菌群落结构及其形成机制

doi: 10.12284/hyxb2023034
基金项目: 福建省自然科学基金(2020J01866);福建省海洋经济发展专项(FJHJF-L-2022-12);闽江学院校级科研项目(MYK21012);自然资源部东海局青年科学基金(202012);自然资源部工程技术创新中心课题(KY-090000-04-2021-002)。
详细信息
    作者简介:

    王飞鹏(1987-),男,山西省运城市人,博士,副教授,主要研究方向为环境微生物分子生态学。E-mail:408386093@qq.com

    通讯作者:

    穆景利,研究员,主要从事海洋生态环境污染物效应及渔业资源的损害评估研究。E-mail:jlmu@mju.edu.cn

  • 中图分类号: Q938

Bacterial community structure and assembly mechanisms in Sansha Bay, Fujian

  • 摘要: 细菌群落在水生生态系统中起着非常关键的作用。基于DNA和RNA高通量测序技术研究了福建三沙湾海域细菌的群落结构及其形成机制。结果发现:(1)三沙湾海域中共检测到细菌1 476个操作分类单元(OTUs),其中γ-变形菌、α-变形菌、蓝细菌和拟杆菌为多样性最高的类群;(2)基于DNA和RNA高通量测序技术均发现这4种类群同时也是该海域细菌群落中的优势类群,但其代谢活性处于不同的状态,主要受到盐度、总氮、亚硝氮和无机磷酸盐浓度的调控;(3)三沙湾细菌群落结构在空间尺度上的分布存在差异,表现为地理位置上越相近的海区其细菌群落结构越相似。中性模型进一步分析发现,三沙湾海域细菌群落的形成主要受到中性过程的调控。本研究结果可为深入理解福建三沙湾海域中细菌群落结构及其形成机制提供理论依据。
  • 图  1  三沙湾采样站位

    Fig.  1  Sampling stations at Sansha Bay

    图  2  基于DNA和RNA测序方案表征的细菌(纲水平)在所有站位(a,b)及其在各站位(c,d)的OTUs数目

    Fig.  2  The numbers of bacterial OTUs (class level) at all sampling stations (a, b) and at each sampling site (c, d) based on DNA and RNA sequencing approaches

    图  3  基于DNA和RNA测序技术表征的三沙湾细菌OTUs数目与温度、盐度、总氮(TN)浓度、氨氮(${{\rm {NH}}_4^+} $-N)浓度、硝态氮(${{\rm {NO}}_3^-} $-N)浓度、亚硝氮(NIT)浓度、总磷(TP)浓度和正磷酸盐(SRP)浓度间的皮尔森相关性分析

    Fig.  3  Pearson correlations between the numbers of OTUs of bacteria and temperature, salinity, total nitrogen (TN) concentration, ammonia nitrogen (${{\rm {NH}}_4^+} $-N) concentration, nitrate nitrogen (${{\rm {NO}}_3^-} $-N) concentration, nitrous nitrogen (NIT) concentration, total phosphorus (TP) concentration and soluble reactive phosphate (SRP) concentration based on the DNA and RNA sequencing data

    图  4  基于DNA和RNA测序表征的细菌群落在纲级水平(a,b)和科级水平(c,d)在各样本间的相对丰度分布

    Fig.  4  Relative abundance of bacterial communities at class level (a, b) and family level (c, d) at each sampling site based on DNA and RNA sequencing approaches

    图  5  基于Bray-Curtis距离矩阵的各样本细菌群落的主坐标分析(PCoA)

    Fig.  5  Principal coordinate analysis (PCoA) of bacterial community in all samples based on Bray-Curtis distance matrix

    图  6  α-变形菌、γ-变形菌、蓝细菌和拟杆菌OTUs代谢活性(RNA∶DNA)热图

    Fig.  6  Heatmap of the OTUs metabolic activities (RNA∶DNA) of α-proteobacteria, γ-proteobacteria, Cyanobacteriia and Bacteroidia

    图  7  基于典型相关分析(CCA)的α-变形菌、γ-变形菌、蓝细菌和拟杆菌代谢活性与环境因子间的相关性

    Fig.  7  Plot of the canonical correlation analysis (CCA) integrating environmental factors and the metabolic activities of α-proteobacteria, γ-proteobacteria, Cyanobacteriia and Bacteroidia

    图  8  基于DNA(a)和RNA(b)表征的细菌OTUs出现频次和相对丰度间的中性模型预测图

    频率高于模型预测值的OTUs显示为红色;频率较低的OTUs显示为绿色;预测范围内的OTUs显示为黑色;蓝色虚线表示模型预测的95%置信区间

    Fig.  8  The neutral community model based on the relationship between bacterial OTUs occurrence and relative read abundance characterized by DNA (a) and RNA (b) approaches

    OTUs with frequencies higher than those predicted by the model are displayed in red; OTUs with lower frequencies are displayed in green; OTUs within the prediction range are displayed in black; the dotted line represents the 95% confidence interval around the model prediction (blue dotted line)

    表  1  各站位温度、盐度及营养盐浓度

    Tab.  1  Temperature, salinity and nutrient concentrations at each sampling station

    站位温度/℃盐度TN浓度/(mg·L−1${{\rm {NH}}_4^+} $-N浓度/(mg·L−1$ {{\rm {NO}}_3^-} $-N浓度/(mg·L−1NIT 浓度/(mg·L−1TP 浓度/(mg·L−1SRP浓度/(mg·L−1
    SS126.729.11.1650.3060.3930.0890.1110.073
    SS227.1301.1360.2030.4100.0890.0900.081
    SS326.921.21.4320.2030.5480.0870.1030.062
    SS427.722.51.9070.2270.5010.0940.1110.058
    SS527.227.81.3630.7660.3710.0990.0940.085
    SS628.523.51.1030.2110.5220.0930.1370.096
    SS726.817.11.7060.2740.6430.0740.1200.104
    SS827.1221.2180.2430.5410.0870.1030.096
    SS927.219.61.5150.2580.5580.0820.1070.092
    SS1027.429.91.3040.2270.3660.0890.0980.104
    SS1127.831.11.4920.2270.3870.1100.1450.138
    SS1226.831.30.5460.2270.3990.1040.0900.134
    SS1326.231.30.4010.2430.3110.0960.0470.107
    下载: 导出CSV

    表  2  基于DNA和RNA测序数据表征的细菌群落在采样站位的α-多样性指数

    Tab.  2  Bacterial alpha diversity at sampling stations based on DNA and RNA sequencing data

    站位DNARNA
    ShannonChao1ShannonChao1
    SS15.41641.016.16690.22
    SS25.74626.416.03669.75
    SS35.44688.156.24620.27
    SS45.35943.555.91653.27
    SS55.56586.336.07584.51
    SS65.94564.286.38615.13
    SS75.74637.285.78606.78
    SS86.20623.265.83579.31
    SS95.86589.085.86608.98
    SS105.92615.966.03606.22
    SS113.22458.175.07649.07
    SS124.64464.096.19731.50
    SS135.51608.155.93792.89
    注:表中粗体数值为各样品中多样性指数的最高值与最低值。
    下载: 导出CSV

    表  3  α-变形菌、γ-变形菌、蓝细菌和拟杆菌OTUs分类信息

    Tab.  3  The OTUs classification information of α-proteobacteria, γ-proteobacteria, Cyanobacteriia and Bacteroidia

    OTUs分类信息OTUs分类信息
    AlphaproteobacteriaOTU_1Rhodobacteraceae bacterium HIMB11GammaproteobacteriaOTU_2Marinobacterium marisflavi
    OTU_5AscidiaceihabitansOTU_3Marinobacter
    OTU_7SAR11_clade_IaOTU_4Alteromonas mediterranea
    OTU_9SulfitobacterOTU_15Neptuniibacter
    OTU_14PseudooceanicolaOTU_16Limnobacter thiooxidans
    OTU_28MarivivensOTU_18Nitrincolaceae
    OTU_29SAR11_clade_IIIOTU_20Ketobacter alkanivorans
    OTU_30alpha proteobacterium HIMB59OTU_23Litoricola
    OTU_39FlavimaricolaOTU_24Alteromonadaceae
    OTU_41SphingomonadaceaeOTU_26Corallomonas stylophorae
    OTU_47PuniceispirillalesOTU_27Marinobacter sp. CP1
    OTU_48HoefleaOTU_31Marinobacterium jannaschii
    OTU_52alpha proteobacterium SCGC AAA015-N04OTU_32Methylophilaceae
    OTU_53MarivitaOTU_42SAR86_clade
    OTU_71SAR11_cladeOTU_43Aestuariibacter
    OTU_77SAR11_clade_IIIOTU_49Nitrincolaceae
    OTU_78SAR116_cladeOTU_50Pseudohongiella
    OTU_82KordiimonadalesOTU_55Glaciecola
    OTU_85SAR116_cladeOTU_56OM60NOR5_clade
    OTU_86SAR11_clade_IIOTU_57Gammaproteobacteria
    OTU_88SAR116_cladeOTU_59Neptuniibacter
    OTU_93ErythrobacterOTU_62RS62 marine group
    OTU_94ParvibaculaceaeOTU_64Vibrio fortis
    OTU_112AlphaproteobacteriaOTU_65Polycyclovorans
    OTU_114ParvularculaOTU_66Methylophilaceae
    OTU_125MagnetospiraceaeOTU_67Pseudoalteromonas phenolica
    OTU_132NisaeaceaeOTU_69Gammaproteobacteria
    OTU_133AEGEAN-169_marine groupOTU_73Halioglobus
    OTU_147StappiaceaeOTU_81SAR86_clade
    OTU_149NRL2OTU_83Luminiphilus
    OTU_166SulfitobacterOTU_84SUP05 cluster
    OTU_168MagnetospiraceaeOTU_90OM60NOR5 clade
    OTU_175PlanktomarinaOTU_96SAR86 clade
    OTU_178Ruegeria sp.OTU_102Ga0077536
    OTU_190SAR11_clade_IbOTU_106Gammaproteobacteria
    OTU_191SAR116_clade OTU_155UBA10353 marine group
    OTU_205Brevundimonas vesicularisOTU_156Methylophilaceae
    OTU_242Maricaulis marisOTU_169EPR3968-O8a-Bc78
    OTU_341RhodobacteraceaeOTU_171Bdellovibrionaceae
    OTU_429Candidatus PuniceispirillumOTU_210unidentified Gammaproteobacteria
    OTU_472RhodobacteraceaeOTU_312Thiotrichaceae
    OTU_588RhodobacteraceaeOTU_408Pontibacterium granulatum
    OTU_1102RhodobacteraceaeOTU_642Marinobacter salarius
    OTU_1104ThalassococcusOTU_681Neptuniibacter
    OTU_1186SAR11 clade_IOTU_804Marinobacter
    OTU_1239RhodobacteraceaeOTU_1020Pontibacterium
    OTU_1382RhodobacteraceaeOTU_1070Halieaceae
    OTU_1757LimimaricolaOTU_1597SAR86_clade
    CyanobacteriiaOTU_6Cyanobium PCC-6307OTU_>1689Neptuniibacter
    OTU_8bacterium WHC4-8OTU_11Aureimarina
    OTU_10unidentified ChloroplastOTU_19 NS5 marine group
    OTU_17Virgulinella fragilisOTU_37Cryomorphaceae
    OTU_22Micromonas commodaOTU_38NS4 marine group
    OTU_25unidentified ChloroplastOTU_45Flavobacteriaceae
    OTU_33environmental clone OCS162OTU_46Crocinitomicaceae
    OTU_58Minutocellus sp. CCMP1701OTU_63Cryomorphaceae
    OTU_74Phalacroma mitraOTU_89NS5 marine group
    OTU_199unidentified ChloroplastOTU_104NS4 marine group
    OTU_247unidentified ChloroplastBacteroidiaOTU_142NS9 marine group
    OTU_606Guillardia thetaOTU_151NS9 marine group
    OTU_858Cyanobium PCC-6307OTU_211NS5 marine group
    OTU_1011BdellovibrionaceaOTU_234NS9 marine group
    OTU_1059unidentified ChloroplastOTU_933Cryomorphaceae
    OTU_107Nitrosococcaceae
    OTU_110Nitrosomonadaceae
    OTU_111Marinobacter
    OTU_115bacterium BW3SW2
    OTU_118Oceanobacter kriegii
    OTU_123Nitrosomonadaceae
    OTU_131Amphritea
    OTU_134Pseudohongiella
    OTU_145Marinobacter litoralis
    下载: 导出CSV
  • [1] 中国海湾志编纂委员会. 中国海湾志(第七分册)[M]. 北京: 海洋出版社, 1994: 45-50.

    China Gulf Chronicles Compilation Committee. China Bay Chronicle (Volume 7)[M]. Beijing: China Ocean Press, 1994: 45−50.
    [2] 王萱, 刘义峰, 郭伟. 近十年三沙湾海水增养殖区环境质量状况与变化趋势评价[J]. 渔业研究, 2019, 41(6): 519−525.

    Wang Xuan, Liu Yifeng, Guo Wei. Evaluation of environmental quality and change trend in Sansha Bay mariculture area in recent ten years[J]. Journal of Fisheries Research, 2019, 41(6): 519−525.
    [3] 周进, 纪炜炜. 三都澳大型底栖动物次级生产力[J]. 海洋渔业, 2012, 34(1): 32−38. doi: 10.3969/j.issn.1004-2490.2012.01.005

    Zhou Jin, Ji Weiwei. Secondary productivity of macrobenthos in Sandu Bay[J]. Marine Fisheries, 2012, 34(1): 32−38. doi: 10.3969/j.issn.1004-2490.2012.01.005
    [4] 黄伟强, 纪炜炜, 付婧, 等. 三沙湾大黄鱼网箱养殖衍生有机物的沉降特征[J]. 中国水产科学, 2020, 27(6): 709−719.

    Huang Weiqiang, Ji Weiwei, Fu Jing, et al. Sedimentation characteristics of aquaculture-derived organic matter from a large yellow croaker (Larimichthys crocea) cage farm in Sansha Bay[J]. Journal of Fishery Sciences of China, 2020, 27(6): 709−719.
    [5] Freimann R, Bürgmann H, Findlay S E, et al. Bacterial structures and ecosystem functions in glaciated floodplains: contemporary states and potential future shifts[J]. The ISME Journal, 2013, 7(12): 2361−2373. doi: 10.1038/ismej.2013.114
    [6] 唐娅菲, 王金辉, 程宏, 等. 三沙湾春季浮游植物群落结构及其与环境因子的关系[J]. 上海海洋大学学报, 2018, 27(4): 522−530. doi: 10.12024/jsou.20170802123

    Tang Yafei, Wang Jinhui, Cheng Hong, et al. Community structure of phytoplankton and its relationship with environmental factors of Sansha Bay in spring[J]. Journal of Shanghai Ocean University, 2018, 27(4): 522−530. doi: 10.12024/jsou.20170802123
    [7] 徐佳奕, 徐兆礼. 三沙湾浮游动物生态类群演替特征[J]. 生态学报, 2013, 33(5): 1413−1424. doi: 10.5846/stxb201207241050

    Xu Jiayi, Xu Zhaoli. Seasonal succession of zooplankton in Sansha Bay, Fujian[J]. Acta Ecologica Sinica, 2013, 33(5): 1413−1424. doi: 10.5846/stxb201207241050
    [8] Wang Feipeng, Huang Bangqin, Xie Yuyuan, et al. Diversity, composition, and activities of nano- and pico-eukaryotes in the northern South China Sea with influences of Kuroshio intrusion[J]. Frontiers in Marine Science, 2021, 8: 658233. doi: 10.3389/fmars.2021.658233
    [9] Massana R, Gobet A, Audic S, et al. Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing[J]. Environmental Microbiology, 2015, 17(10): 4035−4049. doi: 10.1111/1462-2920.12955
    [10] De Vargas C, Audic S, Henry N, et al. Eukaryotic plankton diversity in the Sunlit ocean[J]. Science, 2015, 348(6237): 1261605. doi: 10.1126/science.1261605
    [11] Not F, del Campo J, Balagué V, et al. New insights into the diversity of marine picoeukaryotes[J]. PLoS One, 2009, 4(9): e7143. doi: 10.1371/journal.pone.0007143
    [12] Hu S K, Campbell V, Connell P, et al. Protistan diversity and activity inferred from RNA and DNA at a coastal ocean site in the eastern North Pacific[J]. FEMS Microbiology Ecology, 2016, 92(4): fiw050.
    [13] Wang Feipeng, Xie Yuyuan, Wu Wenxue, et al. Picoeukaryotic diversity and activity in the northwestern Pacific Ocean based on rDNA and rRNA high-throughput sequencing[J]. Frontiers in Microbiology, 2019, 9: 3259. doi: 10.3389/fmicb.2018.03259
    [14] Xu Dapeng, Li Ran, Hu Chen, et al. Microbial eukaryote diversity and activity in the water column of the South China Sea based on DNA and RNA high throughput sequencing[J]. Frontiers in Microbiology, 2017, 8: 1121. doi: 10.3389/fmicb.2017.01121
    [15] Wu Wenxue, Liu Hongbin. Disentangling protist communities identified from DNA and RNA surveys in the Pearl River-South China Sea continuum during the wet and dry seasons[J]. Molecular Ecology, 2018, 27(22): 4627−4640. doi: 10.1111/mec.14867
    [16] Blazewicz S J, Barnard R L, Daly R A, et al. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses[J]. The ISME Journal, 2013, 7(11): 2061−2068. doi: 10.1038/ismej.2013.102
    [17] 国家环境保护总局, 《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.

    State Environmental Protection Administration of China, Editorial Committee of Water and Wastewater Monitoring and Analysis Methods. Water and Wastewater Monitoring and Analysis Methods[M]. 4th Ed. Beijing: China Environmental Science Press, 2002.
    [18] He Shuiqing, Li Dan, Wang Feipeng, et al. Parental exposure to sulfamethazine and nanoplastics alters the gut microbial communities in the offspring of marine madaka (Oryzias melastigma)[J]. Journal of Hazardous Materials, 2022, 423: 127003.
    [19] Magoč T, Salzberg S L. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957−2963. doi: 10.1093/bioinformatics/btr507
    [20] Caporaso J G, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5): 335−336. doi: 10.1038/nmeth.f.303
    [21] Rognes T, Flouri T, Nichols B, et al. VSEARCH: a versatile open source tool for metagenomics[J]. PeerJ, 2016, 4: e2584. doi: 10.7717/peerj.2584
    [22] Edgar R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996−998. doi: 10.1038/nmeth.2604
    [23] Wang Qiong, Garrity G M, Tiedje J M, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 2007, 73(16): 5261−5267. doi: 10.1128/AEM.00062-07
    [24] Dixon P. VEGAN, a package of R functions for community ecology[J]. Journal of Vegetation Science, 2003, 14(6): 927−930. doi: 10.1111/j.1654-1103.2003.tb02228.x
    [25] Esposti M D. Bioenergetic evolution in proteobacteria and mitochondria[J]. Genome Biology and Evolution, 2014, 6(12): 3238−3251. doi: 10.1093/gbe/evu257
    [26] Choi D H, Jang G II, Lapidus A, et al. Draft genome sequence of Marinobacterium rhizophilum CL-YJ9T (DSM 18822T), isolated from the rhizosphere of the coastal tidal-flat plant Suaeda japonica[J]. Standards in Genomic Sciences, 2017, 12: 65. doi: 10.1186/s40793-017-0275-x
    [27] Liu Shuting, Wawrik B, Liu Zhanfei. Different bacterial communities involved in peptide decomposition between Normoxic and hypoxic coastal waters[J]. Frontiers in Microbiology, 2017, 8: 353.
    [28] Barbeau K, Zhang Guangping, Live D H, et al. Petrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticus[J]. Journal of the American Chemical Society, 2002, 124(3): 378−379. doi: 10.1021/ja0119088
    [29] DIéguez A L, Romalde J L. Draft genome sequences of Neptuniibacter sp. strains LFT 1.8 and ATR 1.1[J]. Genome Announcements, 2017, 5(5): e01541−16.
    [30] Tremblay J, Yergeau E, Fortin N, et al. Chemical dispersants enhance the activity of oil- and gas condensate-degrading marine bacteria[J]. The ISME Journal, 2017, 11(12): 2793−2808. doi: 10.1038/ismej.2017.129
    [31] Zheng Li, Cui Zhisong, Xu Luyan, et al. Draft genome sequence of Rhodobacteraceae strain PD-2, an algicidal bacterium with a quorum-sensing system, isolated from the marine microalga Prorocentrum donghaiense[J]. Genome Announcements, 2015, 3(1): e01549−14.
    [32] Zhang Mengyu, Pan Luqing, Huang Fei, et al. Metagenomic analysis of composition, function and cycling processes of microbial community in water, sediment and effluent of Litopenaeus vannamei farming environments under different culture modes[J]. Aquaculture, 2019, 506: 280−293. doi: 10.1016/j.aquaculture.2019.03.038
    [33] Flombaum P, Gallegos J L, Gordillo R A, et al. Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(24): 9824−9829. doi: 10.1073/pnas.1307701110
    [34] Barbeyron T, Thomas F, Barbe V, et al. Habitat and taxon as driving forces of carbohydrate catabolism in marine heterotrophic bacteria: example of the model algae-associated bacterium Zobellia galactanivorans DsijT[J]. Environmental Microbiology, 2016, 18(12): 4610−4627. doi: 10.1111/1462-2920.13584
    [35] 王飞鹏, 黄亚玲, 张瑞瑞, 等. 不同曝气方式对人工湿地细菌多样性、代谢活性及功能的影响[J]. 环境科学, 2022, 43(4): 2007−2017. doi: 10.13227/j.hjkx.202107135

    Wang Feipeng, Huang Yaling, Zhang Ruirui, et al. Effects of different aeration treatments on bacterial diversity, metabolic activity, and function in constructed wetlands[J]. Environmental Science, 2022, 43(4): 2007−2017. doi: 10.13227/j.hjkx.202107135
    [36] Xu Zhimeng, Cheung S, Endo H, et al. Disentangling the ecological processes shaping the latitudinal pattern of phytoplankton communities in the Pacific Ocean[J]. mSystems, 2022, 7(1): e0120321. doi: 10.1128/msystems.01203-21
    [37] Kong Jie, Wang Lei, Lin Cai, et al. Contrasting community assembly mechanisms underlie similar biogeographic patterns of surface microbiota in the tropical north Pacific Ocean[J]. Microbiology Spectrum, 2022, 10(1): e0079821. doi: 10.1128/spectrum.00798-21
    [38] Vellend M. The Theory of Ecological Communities (MPB-57)[M]. Princeton: Princeton University Press, 2016.
    [39] Chave J. Neutral theory and community ecology[J]. Ecology Letters, 2004, 7(3): 241−253. doi: 10.1111/j.1461-0248.2003.00566.x
    [40] Chen Weidong, Ren Kexin, Isabwe A, et al. Stochastic processes shape microeukaryotic community assembly in a subtropical river across wet and dry seasons[J]. Microbiome, 2019, 7(1): 138. doi: 10.1186/s40168-019-0749-8
    [41] Burns A R, Stephens W Z, Stagaman K, et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development[J]. The ISME Journal, 2016, 10(3): 655−664. doi: 10.1038/ismej.2015.142
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  464
  • HTML全文浏览量:  201
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-07
  • 修回日期:  2022-09-28
  • 网络出版日期:  2022-10-14
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回