留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

挪威海畸形波波形特征研究

付睿丽 才华艺 陶爱峰 郑金海 王岗

付睿丽,才华艺,陶爱峰,等. 挪威海畸形波波形特征研究[J]. 海洋学报,2023,45(4):133–143 doi: 10.12284/hyxb2023031
引用本文: 付睿丽,才华艺,陶爱峰,等. 挪威海畸形波波形特征研究[J]. 海洋学报,2023,45(4):133–143 doi: 10.12284/hyxb2023031
Fu Ruili,Cai Huayi,Tao Aifeng, et al. Researches on characteristics of shapes of freak waves in the Norwegian Sea[J]. Haiyang Xuebao,2023, 45(4):133–143 doi: 10.12284/hyxb2023031
Citation: Fu Ruili,Cai Huayi,Tao Aifeng, et al. Researches on characteristics of shapes of freak waves in the Norwegian Sea[J]. Haiyang Xuebao,2023, 45(4):133–143 doi: 10.12284/hyxb2023031

挪威海畸形波波形特征研究

doi: 10.12284/hyxb2023031
基金项目: 国家自然科学基金(52201319);国家自然科学基金委−山东联合基金重点支持项目(U1906230);中国博士后科学基金(2022M711018);江苏省自然科学基金(BK20220980,BK20220082);江苏省卓越博士后计划(2022ZB169);中央高校基本科研业务费(B220201045)。
详细信息
    作者简介:

    付睿丽(1993-),女,甘肃省定西市人,主要从事波浪水动力研究。E-mail: ruilifu@hhu.edu.cn

    通讯作者:

    郑金海(1972-),男,福建省莆田市人,教授,主要从事非线性水波动力学和波流相互作用等研究。E-mail: jhzheng@hhu.edu.cn

  • 中图分类号: TV139.2;P731.22

Researches on characteristics of shapes of freak waves in the Norwegian Sea

  • 摘要: 畸形波波形与其所处海况特征密切相关。在线性、窄谱假定下,最可能出现的畸形波波形服从“新波”理论,即最大波位于波群中间且其前后相邻波浪对称。然而,实际海浪谱通常是包含多种频率成分的宽谱。目前对实测畸形波及其附近波面形态特征仍缺乏系统认知,对其影响因素尚不明确。本文基于挪威海气象观测站共112个畸形波序列,分析实测畸形波波形及影响因素。研究表明,只有52%的畸形波在波群中间,其余畸形波在波群前侧的概率更高。此外,畸形波前后相邻波浪并不完全对称,其中位于后侧的波幅普遍更大。通过定量分析实测畸形波的平均波形与“新波”理论结果,发现谱宽是影响畸形波波形的关键参数。随谱宽增加,畸形波的平均波形与“新波”理论得到的波面序列误差呈指数增加。
  • 图  1  挪威海海洋气象站Mike对应的位置

    Fig.  1  Location of ocean weather station Mike in the Norwegian Sea

    图  2  2004年挪威海海浪谱

    黑色实线为全年平均谱形;灰色阴影为每月平均谱形

    Fig.  2  Wave spectra in the Norwegian Sea in 2004

    The black solid line represents a yearly averaged spectrum; the gray shaded represents ensemble spectra for each month

    图  3  2004年挪威海有效波高–平均周期散点分布图

    Fig.  3  Scatter plot for significant wave heights and averaged periods of the Norwegian Sea during 2004

    图  4  2004年挪威海全年波陡–谱宽散点分布图

    Fig.  4  Scatter plot for steepness and spectral widths of the Norwegian Sea during 2004

    图  5  挪威海实测波高累积概率分布与瑞利分布的对比(a)及实测畸形波无量纲波高分布(b)

    Fig.  5  Comparisons of exceedance probabilities between measured wave heights and the Rayleigh distribution (a), probability distributions of non-dimensionalized wave heights of freak waves (b) in the Norwegian Sea

    图  6  典型实测畸形波序列

    a. 畸形波波峰明显大于波谷(2004年7月8日);b. 畸形波波峰、波谷接近(2004年2月18日);c. 畸形波波谷明显大于波峰(2004年7月6日)

    Fig.  6  Typical measured time series containing freak waves

    a. A freak wave with a greater wave-crest amplitude than the wavetrough (July 8, 2004); b. a freak wave with almost identical amplitude of wave-crest and wavetrough (February 18, 2004); c. a freak wave corresponding to a deeper wavetrough (July 6, 2004)

    图  7  3种不同波形畸形波的出现概率

    Fig.  7  The probability of occurrence of freak waves with the three wave shapes

    图  8  畸形波群内各参数示意图

    图中“+”表示波浪波峰对应的位置

    Fig.  8  Definitions of parameters for wave groups containing a freak wave

    Where "+" indicates the corresponding positions of wave crests

    图  9  波群内最大波峰(或波谷)的相对位置概率分布

    Fig.  9  Probability distributions of the relative position of the largest wave-crest (or wavetrough) within a wave group

    图  10  波群内最大波峰(或波谷)的相对位置随波群内波浪个数(a)、最大无量纲波高(b)、波陡(c)及谱宽(d)的变化

    Fig.  10  Distributions of the relative position of the largest wave-crest (or wavetrough) within a wave group as a function of the number of waves (a), the normalized maximum wave height (b), wave steepness (c), and spectral width (d)

    图  11  波群最大波峰(或波谷)前后相邻波峰(或波谷)不对称性概率分布

    Fig.  11  Probability distributions of asymmetry for the the adjacent preceeding and following wave-crest (wavetrough) of the largest wave-crest (wavetrough)

    图  12  波群最大波峰(或波谷)前后相邻波峰(或波谷)不对称程度随波群内最大无量纲波高(a,b)、波陡(c,d)及谱宽(e,f)的变化

    Fig.  12  Distributions of the asymmetry for the the adjacent preceeding and following wave-crest (wavetrough) of the largest wave-crest (wavetrough) as a function of the normalized maximum wave height (a, b), wave steepness (c, d), and spectral width (e, f)

    图  13  2004年挪威海波峰占优(a)与波谷占优(b)的畸形波及其附近波面无量纲波形

    灰色阴影为实测畸形波波形;蓝色阴影为与实测畸形波相同波况下的“新波”理论波形;黑色虚线为实测平均波形;蓝色实线为不同海况下基于“新波”理论得到的平均波形

    Fig.  13  Normalized temporal profile of sea surface elevations around the observed maximum crest height (a) and the maximum trough height (b) in the Norwegian Sea during 2004

    The gray shaded represents all wave profiles for the measured freak waves; the blue shaded represents wave profiles using the NewWave theory based on the same wave conditions as the measured freak waves; black dash lines represent measured averaged wave shapes; blue solid lines represent averaged wave shapes based on the NewWave theory for different wave cases

    图  14  实测畸形波波形与“新波”理论计算的最大波高附近波面的全局与极值误差随着最大无量纲波高(a,b)、波陡(c,d)、谱宽(e,f)的变化

    Fig.  14  Variations of the errors of total wave surface and of the extreme values between the measured and using the NewWave theory with the normalized maximum wave height (a, b), wave steepness (c, d) and spectral width (e, f)

    图  15  2004年挪威海典型谱宽下波峰占优(a)与波谷占优(b)的畸形波及其附近波面无量纲波形

    灰色阴影为实测畸形波波形;蓝色阴影为与实测畸形波相同波况下的“新波”理论波形;黑色虚线为实测平均波形;蓝色实线为不同海况下基于“新波”理论得到的平均波形

    Fig.  15  Normalized temporal profile of sea surface elevations around the observed maximum crest height in typical spectral widths (a) and the maximum trough height (b) in the Norwegian Sea during 2004

    The gray shaded represents all wave profiles for the measured freak waves; the blue shaded represents wave profiles using the NewWave theory based on the same wave conditions as the measured freak waves; black dash lines represent measured averaged wave shapes; blue solid lines represent averaged wave shapes based on the NewWave theory for different wave cases

  • [1] Dysthe K, Krogstad H E, Müller P. Oceanic rogue waves[J]. Annual Review of Fluid Mechanics, 2008, 40: 287−310. doi: 10.1146/annurev.fluid.40.111406.102203
    [2] 付睿丽, 马玉祥, 董国海. 深水随机波列中畸形波统计特征的研究[J]. 海洋学报, 2021, 43(10): 81−89.

    Fu Ruili, Ma Yuxiang, Dong Guohai. Researches on statistical properties of freak waves in uni-directional random waves in deep water[J]. Haiyang Xuebao, 2021, 43(10): 81−89.
    [3] 璩静, 叶海英. 中国北极科考队成功布放首个极地大型海洋观测浮标[N/OL]. (2012−08−06) [2022−08−04]. http://www.cma.gov.cn/2011xwzx/2011xqhbh/2011xrdtp/201208/t20120806_181019.html.

    Qu Jing, Ye Haiying. China’s Arctic research team successfully deployed its first large ocean observation buoy in the polar region[N/OL]. (2012−08−06) [2022−08−04]. http://www.cma.gov.cn/2011xwzx/2011xqhbh/2011xrdtp/201208/t20120806_181019.html.
    [4] 陈海波. 中国建成世界首座半潜式智能海上渔场可抗12级台风[N/OL]. (2017−06−04) [2022−08−04]. https://www.chinanews.com.cn/cj/2017/06-04/8241330.shtml.

    Chen Haibo. China built the world's first semi-submersible intelligent Marine fishery[N/OL]. (2017−06−04) [2022−08−04]. https://www.chinanews.com.cn/cj/2017/06-04/8241330.shtml.
    [5] Kharif C, Pelinovsky E, Slunyaev A. Rogue Waves in the Ocean[M]. Berlin: Springer, 2009.
    [6] Magnusson A K, Donelan M A. The Andrea wave characteristics of a measured North Sea rogue wave[J]. Journal of Offshore Mechanics and Arctic Engineering, 2013, 135(3): 031108. doi: 10.1115/1.4023800
    [7] Christou M, Ewans K. Field measurements of rogue water waves[J]. Journal of Physical Oceanography, 2014, 44(9): 2317−2335. doi: 10.1175/JPO-D-13-0199.1
    [8] McAllister M, Venugopal V, Borthwick A G L. Wave directional spreading from point field measurements[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473(2200): 20160781. doi: 10.1098/rspa.2016.0781
    [9] 李昊, 管长龙. 北海“新年波事件”海浪场的数值模拟[J]. 海洋湖沼通报, 2019(1): 1−6. doi: 10.13984/j.cnki.cn37-1141.2019.01.001

    Li Hao, Guan Changlong. Numerical modeling of wave field for the New Year wave event occurring at North Sea[J]. Transactions of Oceanology and Limnology, 2019(1): 1−6. doi: 10.13984/j.cnki.cn37-1141.2019.01.001
    [10] Stansell P. Distributions of freak wave heights measured in the North Sea[J]. Applied Ocean Research, 2004, 26(1/2): 35−48.
    [11] Feng Xiangbo, Tsimplis M N, Quartly G D, et al. Wave height analysis from 10 years of observations in the Norwegian Sea[J]. Continental Shelf Research, 2014, 72: 47−56. doi: 10.1016/j.csr.2013.10.013
    [12] Didenkulova I. Shapes of freak waves in the coastal zone of the Baltic Sea (Tallinn Bay)[J]. Boreal Environment Research, 2011, 16(SA): 138−148.
    [13] 陶爱峰, 郑金海, 武雨晴. 江苏近海畸形波特性研究[C]//第一届海洋防灾减灾学术交流会论文集. 北京: 自然资源部海洋减灾中心, 2014: 89.

    Tao Aifeng, Zheng Jinhai, Wu Yuqing. Study on characteristics of freak waves in Jiangsu coastal regions[C]//Proceedings of the First Academic Exchange on Marine Disaster Prevention and Mitigation. Beijing: National Marine Hazard Mitigation Service, 2014: 89.
    [14] Slunyaev A, Sergeeva A, Didenkulova I. Rogue events in spatiotemporal numerical simulations of unidirectional waves in basins of different depth[J]. Natural Hazards, 2016, 84(2): 549−565.
    [15] Sergeeva A, Slunyaev A. Rogue waves, rogue events and extreme wave kinematics in spatio-temporal fields of simulated sea states[J]. Natural Hazards and Earth System Sciences, 2013, 13(7): 1759−1771. doi: 10.5194/nhess-13-1759-2013
    [16] Zhang Huidong, Liao Xinmei, Shi Hongda, et al. Effect of initial condition uncertainty on the profile of maximum wave[J]. Marine Structures, 2022, 82: 103127. doi: 10.1016/j.marstruc.2021.103127
    [17] Tromans P S, Anaturk A R, Hagemeijer P. A new model for the kinematics of large ocean waves-application as a design wave[C]//The First International Offshore and Polar Engineering Conference. Edinburgh, The United Kingdom: ISOPE, 1991: 64−71.
    [18] Taylor P H, Williams B A. Wave statistics for intermediate depth water—NewWaves and symmetry[J]. Journal of Offshore Mechanics and Arctic Engineering, 2004, 126(1): 54−59. doi: 10.1115/1.1641796
    [19] Santo H, Taylor P H, Eatock Taylor R, et al. Average properties of the largest waves in Hurricane Camille[J]. Journal of Offshore Mechanics and Arctic Engineering, 2013, 135(1): 011602. doi: 10.1115/1.4006930
    [20] Gemmrich J, Thomson J. Observations of the shape and group dynamics of rogue waves[J]. Geophysical Research Letters, 2017, 44(4): 1823−1830.
    [21] 文铖, 陶爱峰, 李硕, 等. 挪威北海最大波高的影响分析[J]. 海洋湖沼通报, 2017(2): 12−22. doi: 10.13984/j.cnki.cn37-1141.2017.02.002

    Wen Cheng, Tao Aifeng, Li Shuo, et al. Influence of the maximum wave height in the Norwegian Sea[J]. Transactions of Oceanology and Limnology, 2017(2): 12−22. doi: 10.13984/j.cnki.cn37-1141.2017.02.002
    [22] Fu Ruili, Ma Yuxiang, Dong Guohai, et al. A wavelet-based wave group detector and predictor of extreme events over unidirectional sloping bathymetry[J]. Ocean Engineering, 2021, 229: 108936. doi: 10.1016/j.oceaneng.2021.108936
    [23] Fu Ruili, Ma Yuxiang, Dong Guohai, et al. A new predictor of extreme events in irregular waves considering interactions of adjacent wave groups[J]. Ocean Engineering, 2022, 244: 110441. doi: 10.1016/j.oceaneng.2021.110441
    [24] Feng Xiangbo, Tsimplis M N, Yelland M J, et al. Changes in significant and maximum wave heights in the Norwegian Sea[J]. Global and Planetary Change, 2014, 113: 68−76. doi: 10.1016/j.gloplacha.2013.12.010
    [25] Serio M, Onorato M, Osborne A R, et al. On the computation of the Benjamin-Feir Index[J]. Nuovo Cimento C, Serie 1, 2005, 28(6): 893−903.
    [26] Janssen P A E M. Nonlinear four-wave interactions and freak waves[J]. Journal of Physical Oceanography, 2003, 33(4): 863−884. doi: 10.1175/1520-0485(2003)33<863:NFIAFW>2.0.CO;2
  • 加载中
图(15)
计量
  • 文章访问数:  387
  • HTML全文浏览量:  123
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-04
  • 修回日期:  2022-10-10
  • 网络出版日期:  2023-02-16
  • 刊出日期:  2023-03-31

目录

    /

    返回文章
    返回