Variations in grain size composition and regional sedimentary effects in the north branch of Huanghe River distal mud induced by climate changes and human activities
-
摘要: 受限于海洋动力条件的复杂性,基于陆架泥质沉积重建的古气候或古环境一直存在争议。为此,本文在北黄海地区沿沉积物输运路径采集3根柱样,通过沉积物粒度及其端元组分和基于器测数据的东亚冬季风指数和黄海暖流强度,分析了不同泥区沉积物粒度端元组分对冬季风暴和黄海暖流变化的响应机理和强度,揭示了上述变化在不同区域产生的沉积效应。结果表明,近百年以来黄河远端泥北支的沉积物组分变化受到了自然因素和人类活动的共同影响。1980年以后,人类活动对黄河沉积物入海通量及其组成的影响开始增强,并掩盖了自然演化信息。而1980年以前,不同泥区的不同端元组分对冬季风暴和黄海暖流的响应机理和强度存在差异,具有显著的区域沉积效应:粗端元组分受冬季风暴强度变化主导,能够反映山东半岛北岸跨锋面物质输运强度的变化;细端元组分受到黄海暖流强度变化主导,反映沉积物从北黄海西部泥区到辽东半岛东岸泥区的输运过程。上述结论说明,虽然粒度是表征古气候和古环境变化的重要标志物,但应根据不同泥区沉积物来源和沉积动力环境的特点,谨慎选择敏感端元组分,正确地使用粒度指标。Abstract: Paleoclimate and paleoenvironment reconstruction based on shelf mud deposits remain controversial due to the complexity of coastal dynamic conditions. In this paper, three sediment cores distributed along the sediment transport path in the North Yellow Sea were collected, and the sediment grain size composition, end member, winter storms and Yellow Sea Warm Current strength variation were also analyzed. Based on above analysis, the response mechanism and intensity of different sediment grain size end member to winter storms and Yellow Sea Warm Current were discussed, and sedimentary effect in different regions caused by the above changes was also revealed. The results show that sediment composition in the north branch of Huanghe River distal mud is dominated by the natural condition and human activity over the past 100 years, respectively. Due to the impact of human activities on the sediment flux and composition of the Huanghe River into the sea began to enhance since 1980, and the natural evolution information was destroyed. In addition, through comparing sediment end member of different cores along the sediment transport pathway, the discrepancy in response mechanism and intensity of different end member to winter storms and the Yellow Sea Warm Current were observed before 1980, which reflected significant regional sedimentation effect. Further analysis demonstrated that, the coarse-grained end member is dominated by the winter storm, reflecting intensity of cross-front transport from the north Shandong Peninsula; and the fine-grained end member is controlled by the Yellow Sea Warm Current, representing the long distance transport from the offshore mud patch of the western North Yellow Sea to the eastern coast of the Liaodong Peninsula. Above conclusions indicated that, the sediment grain size is a robust tool for paleoclimate and paleoenvironment reconstruction; however, the utility of sensitive grain size should be based on sediment source and the characteristics of the sediment hydrodynamic environment analysis, and selection of the sensitive grain size and its implication should be careful.
-
Key words:
- North Yellow Sea /
- grain size /
- winter storm /
- Yellow Sea Warm Current /
- cross-front transport
-
图 4 1900–1997年东亚冬季风和N2粗端元组分(EM3)小波交叉谱(a)以及黄海暖流与N4细端元组分(EM1和EM2)小波交叉谱(b)。1900–2020年东亚冬季风指数(c)、黄海暖流温度距平(d)、N2粗端元组分(EM3)(e)、N4细端元组分(EM1和EM2)变化(f)和黄河输沙量(g)。1980–2020年黄河输沙量与柱样N2粗端元组分(EM3)(h)和柱样N4细端元组分(EM1和EM2)(i)之间的相关性
东亚冬季风指数,1900–1997年数据引自文献[34],1998–2020年数据根据文献[35]的定义计算;黄海暖流温度距平,1900–1997年使用SODA数据计算,1998–2020年使用ERA5数据计算
Fig. 4 Cross wavelet transform between East Asian Winter Monsoon (EAWM) and coarse-grained end member (EM3) of Core N2 (a) and between Yellow Sea Warm Current (YSWC) and fine-grained end member (EM1 and EM2) of core N4 (b) during 1900–1997. Variations in EAWM index (c), sea surface temperature (SST) anomaly of Yellow Sea Warm Current (d), coarse-grained end member (EM3) of Core N2 (e) and fine-grained end member (EM1 and EM2) of Core N4 (f). Correlation between sediment load delivered from the Huanghe River to the sea with coarse-grained end member (EM3) of Core N2 (h) and fine-grained end member (EM1 and EM2) of Core N4 (i) during 1980–2020
EAWM index was derived from reference [34] during 1900–1997 and was calculated using data from reference [35] during 1998–2020. SST anomaly of Yellow Sea Warm Current was calculated using SODA data during 1900–1997 and ERA5 data during 1998–2020
表 1 柱样信息
Tab. 1 The information of sample columns
柱样编号 纬度 经度 水深/m 长度/cm N1 37.59°N 122.88°E 40 60.5 N2 38.28°N 122.67°E 50 38 N4 39.08°N 122.32°E 25 41.5 表 2 端元拟合结果
Tab. 2 The results of end member unmixing
No. of EMS EM R2 R2 Theta 2 0.020 0.950 9.053 3 0.020 0.974 7.212 4 0.054 0.992 3.932 5 0.144 0.998 2.103 6 0.218 0.999 1.219 注:No. of EMS为拟合端元数量;EM R2为所有拟合端元之间线性平方相关性的最大值;R2为测量数据集和拟合的端元数据集之间的线性平方相关性;Theta为测量数据集和拟合端元数据集之间的角度距离。 -
[1] 杨作升, 郭志刚, 王兆祥, 等. 黄东海陆架悬浮体向其东部深海区输送的宏观格局[J]. 海洋学报, 1992, 14(2): 81−90.Yang Zuosheng, Guo Zhigang, Wang Zhaoxiang, et al. Basic pattern of transport of suspended matter from the Yellow Sea and East China Sea to the eastern deep seas[J]. Haiyang Xuebao, 1992, 14(2): 81−90. [2] Hu Bangqi, Yang Zuosheng, Zhao Meixun, et al. Grain size records reveal variability of the East Asian winter monsoon since the Middle Holocene in the Central Yellow Sea mud area, China[J]. Science China Earth Sciences, 2012, 55(10): 1656−1668. doi: 10.1007/s11430-012-4447-7 [3] Xiao Shangbin, Li Anchun, Liu J P, et al. Coherence between solar activity and the East Asian winter monsoon variability in the past 8000 years from Yangtze River-derived mud in the East China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 237(2/4): 293−304. [4] Xiang Rong, Yang Zuosheng, Saito Y, et al. East Asia winter monsoon changes inferred from environmentally sensitive grain-size component records during the last 2300 years in mud area southwest off Cheju Island, ECS[J]. Science in China Series D, 2006, 49(6): 604−614. doi: 10.1007/s11430-006-0604-1 [5] Wang Linmiao, Li Guangxue, Gao Fei, et al. Sediment records of environmental changes in the south end of the Zhejiang-Fujian coastal mud area during the past 100 years[J]. Chinese Journal of Oceanology and Limnology, 2014, 32(4): 899−908. doi: 10.1007/s00343-014-3220-5 [6] Zhao Shaohua, Cai Feng, Liu Zhifei, et al. Disturbed climate changes preserved in terrigenous sediments associated with anthropogenic activities during the last century in the Taiwan Strait, East Asia[J]. Marine Geology, 2021, 437: 106499. doi: 10.1016/j.margeo.2021.106499 [7] Zhou Xin, Yang Wenqing, Xiang Rong, et al. Re-examining the potential of using sensitive grain size of coastal muddy sediments as proxy of winter monsoon strength[J]. Quaternary International, 2014, 333: 173−178. doi: 10.1016/j.quaint.2013.12.013 [8] Li Dongling, Li Tiegang, Jiang Hui, et al. East Asian winter monsoon variations and their links to arctic sea ice during the last millennium, inferred from sea surface temperatures in the Okinawa Trough[J]. Paleoceanography and Paleoclimatology, 2018, 33(1): 61−75. doi: 10.1002/2016PA003082 [9] Yang Kaiqing, Hua Wei, Hu Qin. A multi-model analysis of the East Asian monsoon changes in the medieval climate anomaly and Little Ice Age[J]. International Journal of Climatology, 2020, 40(12): 5084−5097. doi: 10.1002/joc.6506 [10] Wang Haoyin, Zhang Lanlan, Xiang Rong, et al. Holocene paleoenvironmental changes in mud area southwest off Cheju Island, East China Sea: evidence from benthic foraminiferal assemblages and stable isotope records[J]. Marine Geology, 2020, 429: 106319. doi: 10.1016/j.margeo.2020.106319 [11] Zhang Kaidi, Li Anchun, Liu Xiting, et al. Heavy mineral record from the East China Sea inner shelf: implications for provenance and climate changes over the past 1500 years[J]. Continental Shelf Research, 2021, 226: 104488. doi: 10.1016/j.csr.2021.104488 [12] Tu Luyao, Zhou Xin, Cheng Wenhan, et al. Holocene East Asian winter monsoon changes reconstructed by sensitive grain size of sediments from Chinese coastal seas: a review[J]. Quaternary International, 2017, 440: 82−90. doi: 10.1016/j.quaint.2016.03.024 [13] Shi Yong, Xu Xiaomei, Sheng Hui, et al. Neglected role of continental circulation in cross-shelf sediment transport: implications for paleoclimate reconstructions[J]. Marine Geology, 2022, 443: 106703. doi: 10.1016/j.margeo.2021.106703 [14] 舒卓, 高建华, 石勇, 等. 山东半岛北岸跨锋面物质输运对辽东半岛东岸沉积有机质含量及来源的影响[J]. 海洋通报, 2022, 41(1): 50−60. doi: 10.11840/j.issn.1001-6392.2022.01.006Shu Zhuo, Gao Jianhua, Shi Yong, et al. The influence of cross-front sediment transport in north coast of Shandong Peninsula on the content and origin of sedimentary organic matter in east coast of Liaodong Peninsula[J]. Marine Science Bulletin, 2022, 41(1): 50−60. doi: 10.11840/j.issn.1001-6392.2022.01.006 [15] 李凡, 姜秀珩, 宋怀龙. 晚更新世以来黄河、长江入海泥沙对南黄海沉积作用的影响[J]. 海洋科学集刊, 1993(1): 61−72.Li Fan, Jiang Xuhang, Song huailong. Influence of the Huanghe and Changjiang rivers sediment loads on South Yellow Sea sedimentation since Late Pleistoene[J]. Bulletin of Marine Science, 1993(1): 61−72. [16] Liu J P, Milliman J D, Gao Shu, et al. Holocene development of the Yellow River’s subaqueous delta, North Yellow Sea[J]. Marine Geology, 2004, 209(1/4): 45−67. [17] 王伟. 北黄海表层沉积物粒度分布特征及其对沉积环境的指示[D]. 青岛: 中国科学院海洋研究所, 2008.Wang Wei. Distribution of surface sediments and sedimentary environment in the North Yellow Sea[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences, 2008. [18] 石勇, 高建华, 刘强, 等. 陆架环流作用下的北黄海中北部细颗粒物质输运[J]. 海洋学报, 2019, 41(4): 53−63.Shi Yong, Gao Jianhua, Liu Qiang, et al. Fine sediment transport in north-central of Yellow Sea: the role of continental shelf circulation[J]. Haiyang Xuebao, 2019, 41(4): 53−63. [19] Shi Y, Gao Jianhua, Sheng Hui, et al. Cross-front sediment transport induced by quick oscillation of the Yellow Sea warm current: evidence from the sedimentary record[J]. Geophysical Research Letters, 2019, 46(1): 226−234. doi: 10.1029/2018GL080751 [20] Yang Z S, Liu J P. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea[J]. Marine Geology, 2007, 240(1/4): 169−176. [21] 程鹏, 高抒. 北黄海西部海底沉积物的粒度特征和净输运趋势[J]. 海洋与湖沼, 2000, 31(6): 604−615. doi: 10.3321/j.issn:0029-814X.2000.06.004Cheng Peng, Gao Shu. Net sediment transport patterns over the northwestern Yellow Sea, based on grain size trend analysis[J]. Oceanologia et Limnologia Sinica, 2000, 31(6): 604−615. doi: 10.3321/j.issn:0029-814X.2000.06.004 [22] 符文侠, 贾锡钧, 魏成凯, 等. 河流泥沙对辽东半岛海岸的填充作用[J]. 黄渤海海洋, 1984, 2(2): 49−55.Fu Wenxia, Jia Xijun, Wei Chengkai, et al. Filling effect of discharge silt on the coast in the Liaodong Peninsula[J]. Journal of Oceanography of Huanghai & Bohai Seas, 1984, 2(2): 49−55. [23] 李光天, 符文侠, 贾锡钧. 辽东潮间浅滩的综合特征[J]. 地理学报, 1986, 41(3): 262−273. doi: 10.3321/j.issn:0375-5444.1986.03.008Li Guangtian, Fu Wenxia, Jia Xijun. The comprehensive characteristic of the Liaodong Peninsular tidal flat[J]. Acta Geographica Sinica, 1986, 41(3): 262−273. doi: 10.3321/j.issn:0375-5444.1986.03.008 [24] Chen Xiaohui, Li Tiegang, Zhang Xunhua, et al. A Holocene Yalu River-derived fine-grained deposit in the southeast coastal area of the Liaodong Peninsula[J]. Chinese Journal of Oceanology and Limnology, 2013, 31(3): 636−647. doi: 10.1007/s00343-013-2087-1 [25] 李艳. 北黄海末次冰消期以来沉积特征及物源环境指示[D]. 青岛: 中国科学院海洋研究所, 2011.Li Yan. Sedimentary characteristics and implication to provenance and sedimentary environment since the Last Deglaciation in the North Yellow Sea[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences, 2011. [26] 石勇. 北黄海西部细颗粒物质的跨锋面输运及其沉积环境效应[D]. 南京: 南京大学, 2020.Shi Yong. Cross-front transport of fine sediment in the western North Yellow Sea and its sedimentary effects[D]. Nanjing: Nanjing University, 2020. [27] Goldberg E D, Koide M. Rates of sediment accumulation in the Indian Ocean[M]//Earth Science and Meteoritics. Amsterdam: NorthHolland Publishing Company, 1963: 90−102. [28] Paterson G A, Heslop D. New methods for unmixing sediment grain size data[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(12): 4494−4506. doi: 10.1002/2015GC006070 [29] Carton J A, Giese B S, Grodsky S A. Sea level rise and the warming of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis[J]. Journal of Geophysical Research: Oceans, 2005, 110(C9): C09006. [30] Carton J A, Giese B S. A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA)[J]. Monthly Weather Review, 2008, 136(8): 2999−3017. doi: 10.1175/2007MWR1978.1 [31] Giese B S, Ray S. El Niño variability in simple ocean data assimilation (SODA), 1871–2008[J]. Journal of Geophysical Research: Oceans, 2011, 116(C2): C02024. [32] Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999−2049. doi: 10.1002/qj.3803 [33] Bell B, Hersbach H, Berrisford P, et al. ERA5 monthly averaged data on single levels from 1950 to 1978 (preliminary version)[EB/OL]. (2022–08–03)[2022–08–04]. https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means-preliminary-back-extension?tab=overview . [34] Zhou W, Wang X, Zhou T J, et al. Interdecadal variability of the relationship between the East Asian winter monsoon and ENSO[J]. Meteorology and Atmospheric Physics, 2007, 98(3): 283−293. [35] Wu Bingyi, Wang Jia. Winter arctic oscillation, siberian high and East Asian winter monsoon[J]. Geophysical Research Letters, 2002, 29(19): 1897. [36] Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society, 1996, 77(3): 437−472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 [37] 林振山, 邓自旺. 子波气候诊断技术的研究[M]. 北京: 气象出版社, 1999.Lin Zhenshan, Zheng Ziwang. Studies on Technique of Wavelet Transform in Climate Diagnostics[M]. Beijing: China Meteorological Press, 1999. [38] 程鹏. 北黄海细颗粒物质的沉积特征与输运过程[D]. 青岛: 中国科学院海洋研究所, 2000.Cheng Peng. Sediment characteristics and transport processes of fine-grained material over the Northern Yellow Sea[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences, 2000. [39] 王桂芝. 北黄海西部泥质沉积特征与成因探讨[D]. 青岛: 中国科学院海洋研究所, 2001.Wang Guizhi. Sedimentary characteristics and mechanism of mud deposits in the Northern Yellow Sea[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences, 2001. [40] 郭世鑫. 近百年来北黄海浮游植物生产力和种群结构变化的生物标志物记录及影响因素[D]. 青岛: 中国海洋大学, 2015.Guo Shixin. Biomarker records of phytoplankton productivity and community structure changes of the North Yellow Sea and its influencing factors over the last 100 years[D]. Qingdao: Ocean University of China, 2015. [41] 黄荣辉, 刘永, 皇甫静亮, 等. 20世纪90年代末东亚冬季风年代际变化特征及其内动力成因[J]. 大气科学, 2014, 38(4): 627−644. doi: 10.3878/j.issn.1006-9895.2013.13245Huang Ronghui, Liu Yong, Huangfu Jingliang, et al. Characteristics and internal dynamical causes of the interdecadal variability of East Asian winter monsoon near the Late 1990s[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(4): 627−644. doi: 10.3878/j.issn.1006-9895.2013.13245 [42] 韩雪, 蔡怡, 陈幸荣, 等. 渤黄海冬季海温异常的时空分布特征及影响因子分析[J]. 热带海洋学报, 2014, 33(5): 1−12. doi: 10.3969/j.issn.1009-5470.2014.05.001Han Xue, Cai Yi, Chen Xingrong, et al. Analysis of temporal and spatial distribution characteristics of winter SST anomalies in the Bohai Sea and Yellow Sea and their influencing factors[J]. Journal of Tropical Oceanography, 2014, 33(5): 1−12. doi: 10.3969/j.issn.1009-5470.2014.05.001 [43] Lin Chuanlan, Su Jilan, Xu Bingrong, et al. Long-term variations of temperature and salinity of the Bohai Sea and their influence on its ecosystem[J]. Progress in Oceanography, 2001, 49(1/4): 7−19. [44] Wei Hao, Shi Jie, Lu Youyu, et al. Interannual and long-term hydrographic changes in the Yellow Sea during 1977–1998[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2010, 57(11/12): 1025−1034. [45] 罗晓凡, 魏皓, 袁承仪. 利用卫星资料分析黄海海表温度的年际与年代际变化[J]. 中国海洋大学学报, 2012, 42(10): 19−25.Luo Xiaofan, Wei Hao, Yuan Chengyi. Inter-annual and decadal variations of sea surface temperature in the Yellow Sea by satellite data[J]. Periodical of Ocean University of China, 2012, 42(10): 19−25. [46] Yuan Chengyi, Wei Hao, Luo Xiaofan, et al. Linkage between winter temperatures in the Yellow Sea and atmospheric circulation indices[J]. Journal of Ocean University of China, 2019, 18(2): 261−270. doi: 10.1007/s11802-019-3821-x [47] Li Yan, Mu Lin, Wang Qingyuan, et al. High-quality sea surface temperature measurements along coast of the Bohai and Yellow seas in China and their long-term trends during 1960–2012[J]. International Journal of Climatology, 2020, 40(1): 63−76. doi: 10.1002/joc.6194 [48] Cai Rongshuo, Tan Hongjian, Kontoyiannis H. Robust surface warming in offshore China seas and its relationship to the East Asian monsoon wind field and ocean forcing on interdecadal time scales[J]. Journal of Climate, 2017, 30(22): 8987−9005. doi: 10.1175/JCLI-D-16-0016.1 [49] Xu Xiaomei, Gao Jianhua, Shi Yong, et al. Cross-front transport triggered by winter storms around the Shandong Peninsula, China[J]. Frontiers in Marine Science, 2022, 9: 975504. doi: 10.3389/fmars.2022.975504 [50] Wu Xiao, Wang Houjie, Bi Naishuang, et al. Climate and human battle for dominance over the Yellow River’s sediment discharge: from the Mid-Holocene to the Anthropocene[J]. Marine Geology, 2020, 425: 106188. doi: 10.1016/j.margeo.2020.106188 [51] Wang Houjie, Yang Zuosheng, Saito Y, et al. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950–2005): impacts of climate change and human activities[J]. Global and Planetary Change, 2007, 57(3/4): 331−354. [52] Wang Shuai, Fu Bojie, Piao Shilong, et al. Reduced sediment transport in the Yellow River due to anthropogenic changes[J]. Nature Geoscience, 2016, 9(1): 38−41. doi: 10.1038/ngeo2602 [53] Gao Jianhua, Shi Yong, Sheng Hui, et al. Rapid response of the Changjiang (Yangtze) River and East China Sea source-to-sink conveying system to human induced catchment perturbations[J]. Marine Geology, 2019, 414: 1−17. doi: 10.1016/j.margeo.2019.05.003 [54] 杨立建, 马小川, 贾建军, 等. 近百年来黄河改道及输沙量变化对山东半岛泥质楔沉积物粒度特征的影响[J]. 海洋学报, 2020, 42(1): 78−89.Yang Lijian, Ma Xiaochuan, Jia Jianjun, et al. Impacts of channel shifts and interannual sediment load reducing of the Yellow River on the grain size characteristics of sediments in the Shandong mud wedge over the past 100 years[J]. Haiyang Xuebao, 2020, 42(1): 78−89.