留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

渤海和南黄海沉积物中氨氧化微生物对硝化潜势的相对贡献

李明月 甄毓 李思琦 米铁柱 贺惠

李明月,甄毓,李思琦,等. 渤海和南黄海沉积物中氨氧化微生物对硝化潜势的相对贡献[J]. 海洋学报,2023,45(1):89–101 doi: 10.12284/hyxb2023018
引用本文: 李明月,甄毓,李思琦,等. 渤海和南黄海沉积物中氨氧化微生物对硝化潜势的相对贡献[J]. 海洋学报,2023,45(1):89–101 doi: 10.12284/hyxb2023018
Li Mingyue,Zhen Yu,Li Siqi, et al. Relative contributions of ammonia-oxidizing microorganisms to nitrification potential in sediments from Bohai Sea and South Yellow Sea[J]. Haiyang Xuebao,2023, 45(1):89–101 doi: 10.12284/hyxb2023018
Citation: Li Mingyue,Zhen Yu,Li Siqi, et al. Relative contributions of ammonia-oxidizing microorganisms to nitrification potential in sediments from Bohai Sea and South Yellow Sea[J]. Haiyang Xuebao,2023, 45(1):89–101 doi: 10.12284/hyxb2023018

渤海和南黄海沉积物中氨氧化微生物对硝化潜势的相对贡献

doi: 10.12284/hyxb2023018
基金项目: 国家自然科学基金(42130410,41806131);中国博士后科学基金(2018M632722);青岛海洋科学与技术国家实验室鳌山科技创新计划(2016ASKJ02);山东省自然科学基金(ZR2021QD104)。
详细信息
    作者简介:

    李明月(1990-),女,河南省周口市人,主要研究方向为氮素生物地球化学循环。E-mail: myligoahead@163.com

    通讯作者:

    甄毓,男,教授,主要研究基于分子生物学的有害藻类、水母鉴定与检测技术及浮游植物分子生态学和微生物海洋学。E-mail: zhenyu@ouc.edu.cn

  • 中图分类号: P722.4;P722.5;X172

Relative contributions of ammonia-oxidizing microorganisms to nitrification potential in sediments from Bohai Sea and South Yellow Sea

  • 摘要: 硝化作用是海洋氮循环的核心过程。作为硝化过程关键步骤的氨氧化过程的主要参与者,氨氧化古菌和氨氧化细菌对硝化作用的相对贡献是海洋氮循环关注的热点问题之一。本文选取渤海和南黄海20个站位的表层沉积物,通过微宇宙培养实验研究了沉积物中氨氧化古菌和氨氧化细菌对硝化潜势的相对贡献。结果表明,渤海和南黄海海域表层沉积物中潜在硝化速率(以氮计,下同)为0.004 6~0.283 1 μmol/(g·d),其中氨氧化古菌潜在硝化速率为0.004 3~0.274 3 μmol/(g·d),氨氧化细菌潜在硝化速率为0.000 4~0.056 0 μmol/(g·d)。氨氧化古菌是硝化潜势的主要贡献者,在渤海海域的贡献率为59.79%~97.95%,在南黄海海域的贡献率为18.47%~94.26%。渤海海域潜在硝化速率显著高于南黄海海域。此外,本研究海域中盐度是影响潜在硝化速率的关键环境因子,对渤海海域的分析则表明越高的${{\rm {NO}}_3^-} $浓度可能指示着越高的硝化潜势。在河口及近海沉积物中,氨氧化古菌在硝化过程中起着更加重要的作用;河口和近岸沉积物硝化潜势总体高于远海。本研究为进一步认识近海海洋氮循环过程提供了参考依据。
  • 图  1  渤海和南黄海海域采样站位

    Fig.  1  Sampling sites in the Bohai Sea and South Yellow Sea

    图  2  渤海海域各站位表层沉积物样品培养体系中亚硝酸盐和硝酸盐积累量

    Fig.  2  The accumulation of nitrite and nitrate during the cultures of surface sediment samples from Bohai Sea

    图  3  南黄海海域各站位表层沉积物样品培养体系中亚硝酸盐和硝酸盐积累量

    Fig.  3  The accumulation of nitrite and nitrate during the cultures of surface sediment samples from South Yellow Sea

    图  4  渤海和南黄海海域表层沉积物中潜在硝化速率

    Fig.  4  The potential nitrification rates in surface sediments of Bohai Sea and South Yellow Sea

    图  5  渤海和南黄海海域表层沉积物潜在硝化速率分布

    Fig.  5  The distribution of potential nitrification rates in surface sediments of Bohai Sea and South Yellow Sea

    图  6  渤海和南黄海海域表层沉积物中AOA对硝化潜势贡献的分布

    Fig.  6  The distribution of the contributions of AOA to nitrification potential in surface sediments of Bohai Sea and South Yellow Sea

    图  7  潜在硝化速率和环境因子RDA和皮尔森相关性分析

    溶解氧、${{\rm {NH}}_4^+} $、${{\rm {NO}}_2^{-}} $、${{\rm {NO}}_3^{-}} $、${{\rm {PO}}_4^{3-}} $、${{\rm {SiO}}_3^{2-}} $分别代表对应浓度;AOA+AOB、AOA、AOB分别代表对应潜在硝化速率;***代表 p<0.001,**代表 p<0.01,*代表 p<0.05

    Fig.  7  RDA and Pearson correlation analysis of potential nitrification rates and environmental parameters

    Dissolved oxygen, ${{\rm {NH}}_4^+} $, ${{\rm {NO}}_2^{-}}$, ${{\rm {NO}}_3^{-}} $, ${{\rm {PO}}_4^{3-}} $, ${{\rm {SiO}}_3^{2-}} $ represent the corresponding concentration; AOA+AOB, AOA, and AOB represent the corresponding potential nitrification rates, respectively; *** represents p<0.001,** represents p<0.01, * represents p<0.05

    图  8  AOA和AOB对硝化潜势的相对贡献及AOA和AOB硝化潜势的比值与环境因子皮尔森相关性分析

    ***代表p<0.001;**代表p< 0.01;*代表p<0.05

    Fig.  8  Pearson correlation analysis between the relative contribution to nitrification potential of AOA and AOB and the nitrification potential of AOA to AOB with the environmental parameters

    *** Represents p<0.001; ** represents p<0.01; * represents p<0.05

    表  1  渤海和南黄海海域采样站位底层水理化参数

    Tab.  1  Physiochemical parameters of bottom water in sampling sites of Bohai Sea and South Yellow Sea

    站位水深/
    m
    温度/
    盐度电导率/
    (mS·cm−1
    溶解氧浓度/
    (mg·L−1
    pH$ {{\rm {NH}}_4^+} $浓度/
    (μmol·L−1
    $ {{\rm {NO}}_2^-} $浓度/
    (μmol·L−1
    $ {{\rm {NO}}_3^-} $浓度/
    (μmol·L−1
    $ {{\rm {PO}}_4^{3-}} $浓度/
    (μmol·L−1
    $ {{\rm {SiO}}_3^{2-}} $浓度/
    (μmol·L−1
    125125.610.1632.1835.468.928.623.9070.0640.2910.0801.253
    356220.310.5831.3835.048.828.602.6060.1523.1310.0844.759
    509417.510.5129.9633.548.678.612.9720.30113.3660.0525.387
    625115.611.1429.8233.938.398.572.8880.1653.6360.0283.001
    526223.98.5032.1834.019.858.633.9180.2370.6950.0841.505
    29416.611.4332.5736.998.348.613.1780.2063.7660.1642.005
    B2222.09.7032.2135.109.668.272.6050.0800.9910.5431.311
    B2424.08.9231.9034.129.448.212.5030.1165.2560.5291.732
    H679.09.2532.7735.278.608.186.1050.4315.1550.80313.124
    H769.09.7132.9635.858.458.183.0240.4427.6940.80615.094
    H932.09.2932.1834.719.268.273.0760.0640.2150.4741.306
    H1249.09.9432.6135.719.098.243.7760.2991.4860.6248.920
    H1681.09.1732.6835.118.728.185.9430.4646.6740.81910.764
    H1880.010.4733.3736.957.818.195.9890.4606.6240.82010.537
    H2061.010.8733.4437.388.508.253.2210.7134.8290.7308.851
    H2239.510.7333.0736.888.888.262.7510.3923.2910.6377.314
    H2713.012.3031.9137.098.678.182.3930.19410.6860.7839.389
    H3029.010.5131.9835.589.018.173.0160.23611.9710.93716.277
    H3134.010.7232.7236.518.978.223.1610.2657.0140.84014.870
    H3450.010.9433.0437.048.968.252.6590.2926.3080.86812.950
    下载: 导出CSV
  • [1] Seitzinger S. Nitrogen cycle: Out of reach[J]. Nature, 2008, 452(7184): 162−163. doi: 10.1038/452162a
    [2] Jensen K, Sloth N P, Risgaard-Petersen N, et al. Estimation of nitrification and denitrification from microprofiles of oxygen and nitrate in model sediment systems[J]. Applied and Environmental Microbiology, 1994, 60(6): 2094−2100. doi: 10.1128/aem.60.6.2094-2100.1994
    [3] 徐颢铭, 宋国栋, 刘素美, 等. 基于次溴酸钠氧化−氨基磺酸还原测定沉积物15N加富培养样品中的 ${^{15}{\rm {NH}}_4^+}$的方法探索[J]. 海洋学报, 2022, 44(1): 147−154.

    Xu Haoming, Song Guodong, Liu Sumei, et al. A sodium hypobromite oxidation-sulfamic acid reduction method for determination of ${^{15}{\rm {NH}}_4^+} $ in 15N enrichment sediment slurry incubation samples[J]. Haiyang Xuebao, 2022, 44(1): 147−154.
    [4] Kowalchuk G A, Stephen J R. Ammonia-oxidizing bacteria: a model for molecular microbial ecology[J]. Annual Review of Microbiology, 2001, 55: 485−529. doi: 10.1146/annurev.micro.55.1.485
    [5] Norton J M, Stark J M. Regulation and measurement of nitrification in terrestrial systems[J]. Methods in Enzymology, 2011, 486: 343−368.
    [6] 李如忠, 阙凤翔, 熊鸿斌, 等. 巢湖十五里河河床地貌单元沉积物硝化速率及污染特征[J]. 环境科学, 2019, 40(1): 211−218.

    Li Ruzhong, Que Fengxiang, Xiong Hongbin, et al. Nitrification rates and pollution characteristics of sediments with different geomorphic features in the Shiwuli Stream, Chaohu Lake Basin[J]. Environmental Science, 2019, 40(1): 211−218.
    [7] Venter J C, Remington K, Heidelberg J F, et al. Environmental genome shotgun sequencing of the Sargasso Sea[J]. Science, 2004, 304(5667): 66−74. doi: 10.1126/science.1093857
    [8] Treusch A H, Leininger S, Kletzin A, et al. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling[J]. Environmental Microbiology, 2005, 7(12): 1985−1995. doi: 10.1111/j.1462-2920.2005.00906.x
    [9] Könneke M, Bernhard A E, de la Torre J R, et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon[J]. Nature, 2005, 437(7058): 543−546. doi: 10.1038/nature03911
    [10] Hou Jie, Song Chunlei, Cao Xiuyun, et al. Shifts between ammonia-oxidizing bacteria and archaea in relation to nitrification potential across trophic gradients in two large Chinese lakes (Lake Taihu and Lake Chaohu)[J]. Water Research, 2013, 47(7): 2285−2296. doi: 10.1016/j.watres.2013.01.042
    [11] Sims A, Horton J, Gajaraj S, et al. Temporal and spatial distributions of ammonia-oxidizing archaea and bacteria and their ratio as an indicator of oligotrophic conditions in natural wetlands[J]. Water Research, 2012, 46(13): 4121−4129. doi: 10.1016/j.watres.2012.05.007
    [12] Ouyang Yang, Norton J M, Stark J M. Ammonium availability and temperature control contributions of ammonia oxidizing bacteria and archaea to nitrification in an agricultural soil[J]. Soil Biology and Biochemistry, 2017, 113: 161−172. doi: 10.1016/j.soilbio.2017.06.010
    [13] Islam G M, Vi P, Gilbride K A. Functional relationship between ammonia-oxidizing bacteria and ammonia-oxidizing archaea populations in the secondary treatment system of a full-scale municipal wastewater treatment plant[J]. Journal of Environmental Sciences, 2019, 86: 120−130. doi: 10.1016/j.jes.2019.04.031
    [14] Caffrey J M, Bano N, Kalanetra K, et al. Ammonia oxidation and ammonia-oxidizing bacteria and archaea from estuaries with differing histories of hypoxia[J]. The ISME Journal, 2007, 1(7): 660−662. doi: 10.1038/ismej.2007.79
    [15] Bernhard A E, Landry Z C, Blevins A, et al. Abundance of ammonia-oxidizing Archaea and Bacteria along an estuarine salinity gradient in relation to potential nitrification rates[J]. Applied and Environmental Microbiology, 2010, 76(4): 1285−1289. doi: 10.1128/AEM.02018-09
    [16] Zheng Yanling, Hou Lijun, Newell S, et al. Community dynamics and activity of ammonia-oxidizing prokaryotes in intertidal sediments of the Yangtze Estuary[J]. Applied and Environmental Microbiology, 2014, 80(1): 408−419. doi: 10.1128/AEM.03035-13
    [17] Christman G D, Cottrell M T, Popp B N, et al. Abundance, diversity, and activity of ammonia-oxidizing prokaryotes in the coastal Arctic Ocean in summer and winter[J]. Applied and Environmental Microbiology, 2011, 77(6): 2026−2034. doi: 10.1128/AEM.01907-10
    [18] 贺惠, 甄毓, 米铁柱, 等. 乳山湾邻近海域沉积物中好氧氨氧化微生物分布特征[J]. 环境科学, 2015, 36(11): 4068−4073.

    He Hui, Zhen Yu, Mi Tiezhu, et al. Distribution of aerobic ammonia-oxidizing microorganisms in sediments from adjacent waters of Rushan Bay[J]. Environmental Science, 2015, 36(11): 4068−4073.
    [19] He Hui, Zhen Yu, Mi Tiezhu, et al. Ammonia-oxidizing archaea and bacteria differentially contribute to ammonia oxidation in sediments from adjacent waters of Rushan Bay, China[J]. Frontiers in Microbiology, 2018, 9: 116. doi: 10.3389/fmicb.2018.00116
    [20] Prosser J I, Hink L, Gubry-Rangin C, et al. Nitrous oxide production by ammonia oxidizers: physiological diversity, niche differentiation and potential mitigation strategies[J]. Global Change Biology, 2020, 26(1): 103−118. doi: 10.1111/gcb.14877
    [21] He Hui, Zhen Yu, Mi Tiezhu, et al. Seasonal and spatial distribution of ammonia-oxidizing microorganism communities in surface sediments from the East China Sea[J]. Acta Oceanologica Sinica, 2015, 34(8): 83−92. doi: 10.1007/s13131-015-0710-z
    [22] Jia Zhongjun, Conrad R. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil[J]. Environmental Microbiology, 2009, 11(7): 1658−1671. doi: 10.1111/j.1462-2920.2009.01891.x
    [23] Bernhard A E, Tucker J, Giblin A E, et al. Functionally distinct communities of ammonia-oxidizing bacteria along an estuarine salinity gradient[J]. Environmental Microbiology, 2007, 9(6): 1439−1447. doi: 10.1111/j.1462-2920.2007.01260.x
    [24] Chang Yongkai, Fan Jingfeng, Su Jie, et al. Spatial abundance, diversity, and activity of ammonia-oxidizing bacteria in coastal sediments of the Liaohe Estuary[J]. Current Microbiology, 2017, 74(5): 632−640. doi: 10.1007/s00284-017-1226-x
    [25] Alcamán-Arias M E, Cifuentes-Anticevic J, Díez B, et al. Surface ammonia-oxidizer abundance during the late summer in the West Antarctic coastal system[J]. Frontiers in Microbiology, 2022, 13: 821902. doi: 10.3389/fmicb.2022.821902
    [26] 杨韦玲, 胡佳杰, 胡宝兰. 抑制剂在氨氧化微生物研究中的应用[J]. 微生物学报, 2018, 58(10): 1722−1731.

    Yang Weiling, Hu Jiajie, Hu Baolan. Application of inhibitors in research of ammonia oxidizing microorganisms[J]. Acta Microbiologica Sinica, 2018, 58(10): 1722−1731.
    [27] Tatti E, Duff A M, Kostrytsia A, et al. Potential nitrification activity reflects ammonia oxidizing bacteria but not archaea activity across a soil-sediment gradient[J]. Estuarine, Coastal and Shelf Science, 2022, 264: 107666. doi: 10.1016/j.ecss.2021.107666
    [28] Ning Xiuren, Lin Chuanlan, Su Jilan, et al. Long-term environmental changes and the responses of the ecosystems in the Bohai Sea during 1960−1996[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2010, 57(11/12): 1079−1091.
    [29] Liu S M, Zhang J, Chen S Z, et al. Inventory of nutrient compounds in the Yellow Sea[J]. Continental Shelf Research, 2003, 23(11−13): 1161−1174. doi: 10.1016/S0278-4343(03)00089-X
    [30] Li Xinyu, Chen H T, Jiang Xueyan, et al. Impacts of human activities on nutrient transport in the Yellow River: the role of the Water-Sediment Regulation Scheme[J]. Science of the Total Environment, 2017, 592: 161−170. doi: 10.1016/j.scitotenv.2017.03.098
    [31] de Souza M P, Chu D, Zhao M, et al. Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard[J]. Plant Physiology, 1999, 119(2): 565−574. doi: 10.1104/pp.119.2.565
    [32] Zheng Yanling, Hou Lijun, Liu Min, et al. Diversity, abundance, and activity of ammonia-oxidizing bacteria and archaea in Chongming eastern intertidal sediments[J]. Applied Microbiology and Biotechnology, 2013, 97(18): 8351−8363. doi: 10.1007/s00253-012-4512-3
    [33] Dang Chenyuan, Liu Wen, Lin Yaxuan, et al. Dominant role of ammonia-oxidizing bacteria in nitrification due to ammonia accumulation in sediments of Danjiangkou reservoir, China[J]. Applied Microbiology and Biotechnology, 2018, 102(7): 3399−3410. doi: 10.1007/s00253-018-8865-0
    [34] Henriksen K, Hansen J I, Blackburn T H. Rates of nitrification, distribution of nitrifying bacteria, and nitrate fluxes in different types of sediment from Danish waters[J]. Marine Biology, 1981, 61(4): 299−304. doi: 10.1007/BF00401569
    [35] Kemp W M, Sampou P, Caffrey J, et al. Ammonium recycling versus denitrification in Chesapeake Bay sediments[J]. Limnology and Oceanography, 1990, 35(7): 1545−1563. doi: 10.4319/lo.1990.35.7.1545
    [36] Tourna M, Stieglmeier M, Spang A, et al. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(20): 8420−8425. doi: 10.1073/pnas.1013488108
    [37] Tu Renjie, Jin Wenbiao, Han Songfang, et al. Rapid enrichment and ammonia oxidation performance of ammonia-oxidizing archaea from an urban polluted river of China[J]. Environmental Pollution, 2019, 255: 113258. doi: 10.1016/j.envpol.2019.113258
    [38] Wang Jianhua, He Yan, Zhu Jin, et al. Screening and optimizing of inhibitors for ammonia-oxidizing bacteria in sediments of malodorous river[J]. Applied Microbiology and Biotechnology, 2017, 101(15): 6193−6203. doi: 10.1007/s00253-017-8318-1
    [39] Boatman C D, Murray J W. Modeling exchangeable ${{\rm {NH}}_4^+} $ adsorption in marine sediments: Process and controls of adsorption[J]. Limnology and Oceanography, 1982, 27(1): 99−110. doi: 10.4319/lo.1982.27.1.0099
    [40] Rysgaard S, Thastum P, Dalsgaard T, et al. Effects of salinity on ${{\rm {NH}}_4^+} $ adsorption capacity, nitrification, and denitrification in Danish estuarine sediments[J]. Estuaries, 1999, 22(1): 21−30. doi: 10.2307/1352923
    [41] Molina V, Dorador C, Fernández C, et al. The activity of nitrifying microorganisms in a high-altitude Andean wetland[J]. FEMS Microbiology Ecology, 2018, 94(6): fiy062.
    [42] 于少兰, 乔延路, 韩彦琼, 等. 好氧氨氧化微生物系统发育及生理生态学差异[J]. 微生物学通报, 2015, 42(12): 2457−2465.

    Yu Shaolan, Qiao Yanlu, Han Yanqiong, et al. Differences between ammonia-oxidizing microorganisms in phylogeny and physiological ecology[J]. Microbiology China, 2015, 42(12): 2457−2465.
    [43] Schleper C, Jurgens G, Jonuscheit M. Genomic studies of uncultivated archaea[J]. Nature Reviews Microbiology, 2005, 3(6): 479−488. doi: 10.1038/nrmicro1159
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  253
  • HTML全文浏览量:  122
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-18
  • 修回日期:  2022-08-26
  • 网络出版日期:  2022-09-08
  • 刊出日期:  2023-01-09

目录

    /

    返回文章
    返回