留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人类活动对珠江伶仃洋余环流结构的影响研究:以洪季小潮为例

梅金亚 陈永平 储南洋 苏敏 刘培 姚鹏

梅金亚,陈永平,储南洋,等. 人类活动对珠江伶仃洋余环流结构的影响研究:以洪季小潮为例[J]. 海洋学报,2023,45(2):27–41 doi: 10.12284/hyxb2023013
引用本文: 梅金亚,陈永平,储南洋,等. 人类活动对珠江伶仃洋余环流结构的影响研究:以洪季小潮为例[J]. 海洋学报,2023,45(2):27–41 doi: 10.12284/hyxb2023013
Mei Jinya,Chen Yongping,Chu Nanyang, et al. Human effects on the residual circulations in the Lingding Bay, Zhujiang River Estuary: a case study of neap tides during flood season[J]. Haiyang Xuebao,2023, 45(2):27–41 doi: 10.12284/hyxb2023013
Citation: Mei Jinya,Chen Yongping,Chu Nanyang, et al. Human effects on the residual circulations in the Lingding Bay, Zhujiang River Estuary: a case study of neap tides during flood season[J]. Haiyang Xuebao,2023, 45(2):27–41 doi: 10.12284/hyxb2023013

人类活动对珠江伶仃洋余环流结构的影响研究:以洪季小潮为例

doi: 10.12284/hyxb2023013
基金项目: 国家自然科学基金(51979076,51809296);中央高校基本科研业务费专项资金(B200202057,2019B04514);中国博士后科学基金(2021M70378);大连理工大学海岸和近海工程国家重点实验室开放基金(LP2207);广州市南沙区水务局科技项目(2022-263)。
详细信息
    作者简介:

    梅金亚(1997-),男,河南省信阳市人,主要从事河口海岸水动力环境方面研究。E-mail:201303020028@hhu.edu.cn

    通讯作者:

    姚鹏,副教授,主要从事河口海岸动力与泥沙运动研究。E-mail: p.yao@hhu.edu.cn

  • 中图分类号: TV148

Human effects on the residual circulations in the Lingding Bay, Zhujiang River Estuary: a case study of neap tides during flood season

  • 摘要: 近20 a来,受高强度人类活动影响,珠江伶仃洋滩槽已发生远超自然过程的异变,其河口动力结构必然发生响应,影响物质输运过程。本研究利用三维水动力数值模型,探讨了伶仃洋河口小潮期余环流结构的变化特征及原因。结果表明:近20 a来伶仃洋底层余流强度提高,沿深槽上溯时向中滩偏转,易引起泥沙汇聚于此。中滩存在表层向西,底层向东的横向余环流结构,主要由非线性对流项和科氏力项驱动。中滩大规模采砂后引起对流项变化,造成余环流结构东移,表、底层余流增强,可加快表底层物质交换。西槽内存在表层向海、底层向陆的纵向余环流结构,主要由正压和斜压梯度力驱动。受浚深影响,向陆斜压梯度力和非线性对流项均增强,引起表层余流减小22%,而底层增大24%,这将削弱小潮期西槽内水体交换能力,即减慢物质输出,易造成西槽淤积、水环境恶化等影响。研究成果对研究人类活动干扰下的河口余环流结构及物质输运响应具有一定借鉴意义。
  • 图  1  模型网格示意图(a),伶仃洋河口示意图(b), 1998–2007年地形冲淤变化(c)和2007–2016年地形冲淤变化(d)

    Fig.  1  Sketch of the model grid (a), sketch of the Lingding Bay (b), changes in topographic erosion/siltation from 1998 to 2007 (c) and changes in topographic erosion/siltation from 2007 to 2016 (d)

    图  2  潮位模拟值与实测值对比

    Fig.  2  Comparison of simulated and measured tide level values

    图  3  流速(垂线平均)、流向模拟值与实测值对比

    Fig.  3  Comparison of simulated and measured values of flow velocity (depth average) and flow direction

    图  4  小潮时期潮平均余流(表层)

    Fig.  4  Tidal average residual current during neap tide (surface layer)

    图  5  小潮时期潮平均余流(底层)

    Fig.  5  Tidal average residual current during neap tide (bottom layer)

    图  6  A断面小潮时期潮平均垂向环流

    背景图代表纵向环流流速,为南北方向(即垂直横断面方向),正值(红色)表示余流方向从内陆向海,负值(蓝色)表示余流方向从海向陆

    Fig.  6  Tidally averaged residual current during neap tide along Profile A

    The background image represents the longitudinal circulation flow velocity, which is in the north-south direction (vertical cross-section direction), positive value (red) indicates that the residual current direction is from inland to sea, and negative value (blue) indicates that the residual current direction is from sea to land

    图  7  B断面小潮时期潮平均垂向环流

    背景图代表纵向环流流速,为南北方向(即垂直横断面方向),正值(红色)表示余流方向从内陆向海,负值(蓝色)表示余流方向从海向陆

    Fig.  7  Tidally averaged residual current during neap tide along Profile B

    The background image represents the longitudinal circulation flow velocity, which is in the north-south direction (vertical cross-section direction), positive value (red) indicates that the residual current direction is from inland to sea, and negative value (blue) indicates that the residual current direction is from sea to land

    图  8  西槽小潮时期潮平均纵向余环流(正值向海,负值向陆)

    Fig.  8  Tidally averaged residual current on West Channel (positive values mean seaward direction while negative means landward)

    图  9  2007年(a1–a5)和2016年(b1–b5) 小潮期B断面动量平衡方程的各项沿程分布

    Fig.  9  Momentum terms during neap tide along the Profile B in 2007 (a1−a5) and 2016 (b1−b5)

    图  10  2007年(a1–a5)和2016年(b1–b5)小潮期西槽内动量方程的各项沿程分布

    Fig.  10  Momentum terms during neap tide along the West Channel in 2007 (a1–a5) and 2016 (b1–b5)

    表  1  西槽浚深前、后动量平衡方程各项沿程平均值的变化(正:向南,负:向北)

    Tab.  1  Changes in the mean values of the momentum terms before and after the deepening of the Western Channel (positive values mean southward while negative means northward)

    动量方程各项表底层浚深前加速度/
    (10−5 m·s−2)
    浚深后加速度/
    (10−5 m·s−2)
    变幅
    正压梯度力表层0.790.9925%
    底层0.790.9925%
    斜压梯度力表层–0.21–0.51143%
    底层–4.20–6.1747%
    对流项表层0.14–0.243%
    底层–0.320.84163%
    4项之和表层0.530.30–43%
    底层–4.24–5.2724%
    下载: 导出CSV
  • [1] Chen Lianghong, Gong Wenping, Zhang Heng, et al. Lateral circulation and associated sediment transport in a convergent estuary[J]. Journal of Geophysical Research: Oceans, 2020, 125(8): e2019JC015926.
    [2] Masunaga E, Arthur R S, Yamazaki H. Baroclinic residual circulation and mass transport due to internal tides[J]. Journal of Geophysical Research: Oceans, 2020, 125(4): e2019JC015316.
    [3] Zhou Zaiyang, Ge Jianzhong, van Maren D S, et al. Study of sediment transport in a tidal channel-shoal system: lateral effects and slack-water dynamics[J]. Journal of Geophysical Research: Oceans, 2021, 126(3): e2020JC016334.
    [4] Shen Qi, Huang Wenrui, Wan Yuanyang, et al. Observation of the sediment trapping during flood season in the deep-water navigational channel of the Changjiang Estuary, China[J]. Estuarine, Coastal and Shelf Science, 2020, 237: 106632. doi: 10.1016/j.ecss.2020.106632
    [5] 蒋杰, 何青, 朱磊, 等. 长江口浑浊带核心区北槽水动力特征研究[J]. 海洋学报, 2019, 41(1): 11−20.

    Jiang Jie, He Qing, Zhu Lei, et al. Analysis of hydrodynamic features of the North Passage in the turbidity maximum, Changjiang Estuary[J]. Haiyang Xuebao, 2019, 41(1): 11−20.
    [6] Lin Lei, Liu Zhe, Xie Lian, et al. Dynamics governing the response of tidal current along the mouth of Jiaozhou Bay to land reclamation[J]. Journal of Geophysical Research: Oceans, 2015, 120(4): 2958−2972. doi: 10.1002/2014JC010434
    [7] 王宗旭, 乔煜, 季小梅, 等. 珠江河口岸线变化对潮动力的影响[J]. 科学技术与工程, 2020, 20(3): 1171−1180.

    Wang Zongxu, Qiao Yu, Ji Xiaomei, et al. The influence of coastline changes on tidal dynamics in the Pearl River Estuary[J]. Science Technology and Engineering, 2020, 20(3): 1171−1180.
    [8] Wang Zhengbing, Jeuken M C J L, Gerritsen H, et al. Morphology and asymmetry of the vertical tide in the Westerschelde Estuary[J]. Continental Shelf Research, 2002, 22(17): 2599−2609. doi: 10.1016/S0278-4343(02)00134-6
    [9] Chu Nanyang, Yao Peng, Ou Suying, et al. Response of tidal dynamics to successive land reclamation in the Lingding Bay over the last century[J]. Coastal Engineering, 2022, 173: 104095. doi: 10.1016/j.coastaleng.2022.104095
    [10] Wong L A, Chen J C, Xue Huijie, et al. A model study of the circulation in the Pearl River Estuary (PRE) and its adjacent coastal waters: 2. Sensitivity experiments[J]. Journal of Geophysical Research: Oceans, 2003, 108(C5): 3157. doi: 10.1029/2002JC001452
    [11] Wong L A, Chen J C, Xue Huijie, et al. A model study of the circulation in the Pearl River Estuary (PRE) and its adjacent coastal waters: 1. Simulations and comparison with observations[J]. Journal of Geophysical Research: Oceans, 2003, 108(C5): 3156. doi: 10.1029/2002JC001451
    [12] 王彪. 伶仃洋河口环流特征及其动力机制分析[J]. 水动力学研究与进展A辑, 2014, 29(5): 608−617.

    Wang Biao. Analysis on the estuarine circulation and its dynamic mechanism in the Lingdingyang Bay[J]. Chinese Journal of Hydrodynamics, 2014, 29(5): 608−617.
    [13] Lin Shicheng, Liu Guangping, Niu Jianwei, et al. Responses of hydrodynamics to changes in shoreline and bathymetry in the Pearl River Estuary, China[J]. Continental Shelf Research, 2021, 229: 104556. doi: 10.1016/j.csr.2021.104556
    [14] 易侃, 龚文平. 伶仃洋河口横向环流[J]. 海洋学报, 2015, 37(3): 1−14.

    Yi Kan, Gong Wenping. Lateral circulation in the Lingding Estuary[J]. Haiyang Xuebao, 2015, 37(3): 1−14.
    [15] 杨清书. 破解珠江河口治理挑战, 构筑粤港澳大湾区用水安全[J]. 中国环境管理, 2018, 10(1): 101−102.

    Yang Qingshu. Solving the challenges of managing the Pearl River Estuary and building water security in the Guangdong-Hong Kong-Macao Greater Bay Area[J]. Chinese Journal of Environmental Management, 2018, 10(1): 101−102.
    [16] 罗宪林, 杨清书, 贾良文, 等. 珠江三角洲网河河床演变[M]. 广州: 中山大学出版社, 2002.

    Luo Xianlin, Yang Qingshu, Jia Liangwen, et al. River-Bed Evolution of the Pearl River Delta[M]. Guangzhou: Sun Yat-Sen University press, 2002.
    [17] Mao Qingwen, Shi Ping, Yin Kedong, et al. Tides and tidal currents in the Pearl River Estuary[J]. Continental Shelf Research, 2004, 24(16): 1797−1808. doi: 10.1016/j.csr.2004.06.008
    [18] Wu Ziyin, Milliman J D, Zhao Dineng, et al. Recent geomorphic change in Lingding Bay, China, in response to economic and urban growth on the Pearl River Delta, Southern China[J]. Global and Planetary Change, 2014, 123: 1−12. doi: 10.1016/j.gloplacha.2014.10.009
    [19] 姚鹏. 人类活动对珠江口伶仃洋年代际动力地貌演变的贡献研究[D]. 广州: 中山大学, 2019.

    Yao Peng. Decadal varibility of Lingdingyang Bay morphodynamcs: the role of human activities[D]. Guangzhou: Sun Yat-sen University, 2019.
    [20] 谢丽莉, 刘霞, 杨清书, 等. 人类活动驱动下伶仃洋洪季大潮水沙异变[J]. 泥沙研究, 2015(3): 56−62. doi: 10.16239/j.cnki.0468-155x.2015.03.009

    Xie Lili, Liu Xia, Yang Qingshu, et al. Variations of current and sediment transport in Lingding Bay during spring tide in flood season driven by human activities[J]. Journal of Sediment Research, 2015(3): 56−62. doi: 10.16239/j.cnki.0468-155x.2015.03.009
    [21] Hydraulics D. Delft3D-FLOW User Manual. Version: 3.15[M]. Delft: Deltares, 2018.
    [22] 夏维, 周争桥. 基于观测资料的珠江口附近海域夏季气象水文要素分析[J]. 海洋湖沼通报, 2021, 43(5): 60−65. doi: 10.13984/j.cnki.cn37-1141.2021.05.008

    Xia Wei, Zhou Zhengqiao. Analysis of meteorological and hydrological elements in the sea around the Pearl River Estuary based on observed data in summer[J]. Transactions of Oceanology and Limnology, 2021, 43(5): 60−65. doi: 10.13984/j.cnki.cn37-1141.2021.05.008
    [23] Allen J I, Somerfield P J, Gilbert F J. Quantifying uncertainty in high-resolution coupled hydrodynamic-ecosystem models[J]. Journal of Marine Systems, 2007, 64(1/4): 3−14.
    [24] 袁菲, 卢陈, 杨裕桂, 等. 珠江口伶仃洋及磨刀门盐淡水混合特征及机制分析[J]. 海洋环境科学, 2021, 40(3): 361−368, 378. doi: 10.12111/j.mes.20200018

    Yuan Fei, Lu Chen, Yang Yugui, et al. Comparative analysis of the characteristics and mechanism of the salt-fresh water mixing in Lingdingyang and Modaomen Estuary, Pearl River Estuary[J]. Marine Environmental Science, 2021, 40(3): 361−368, 378. doi: 10.12111/j.mes.20200018
    [25] Scully M E, Geyer W R, Lerczak J A. The influence of lateral advection on the residual estuarine circulation: a numerical modeling study of the Hudson River Estuary[J]. Journal of Physical Oceanography, 2009, 39(1): 107−124. doi: 10.1175/2008JPO3952.1
    [26] Martin W D, MacCready P. Influence of large-scale tidal asymmetry on subtidal dynamics in the western Strait of Juan de Fuca[J]. Journal of Geophysical Research: Oceans, 2011, 116(C2): C02009.
    [27] Yang Gang, Wang Xiaohua, Cheng Zhixin, et al. Modelling study on estuarine circulation and its effect on the turbidity maximum zone in the Yalu River Estuary, China[J]. Estuarine, Coastal and Shelf Science, 2021, 263: 107634. doi: 10.1016/j.ecss.2021.107634
    [28] Wu Tianning, Wu Hui. Tidal mixing sustains a bottom-trapped river plume and buoyant coastal current on an energetic continental shelf[J]. Journal of Geophysical Research: Oceans, 2018, 123(11): 8026−8051. doi: 10.1029/2018JC014105
    [29] 应强, 何杰, 辛文杰. 巨型人工采砂坑对伶仃洋自然演变的影响[J]. 水科学进展, 2019, 30(6): 915−922.

    Ying Qiang, He Jie, Xin Wenjie. Influence of giant artificial sand pits on the natural evolution of Lingding Bay[J]. Advances in Water Science, 2019, 30(6): 915−922.
    [30] 欧素英. 华南不同类型热带风暴驱动下珠江口表层悬沙分布趋势[J]. 热带海洋学报, 2019, 38(3): 22−31.

    Ou Suying. Surface suspended sediment distribution of Pearl RiveR Estuary under tropical storms with different wind and river discharge forcing[J]. Journal of Tropical Oceanography, 2019, 38(3): 22−31.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  278
  • HTML全文浏览量:  110
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-23
  • 修回日期:  2022-08-30
  • 网络出版日期:  2022-10-19
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回