留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冰–水侧向融化过程的实验室试验研究

贾磊 姜令强 卢鹏 解飞 祖永恒 王庆凯 李志军

贾磊,姜令强,卢鹏,等. 冰–水侧向融化过程的实验室试验研究[J]. 海洋学报,2023,45(2):42–50 doi: 10.12284/hyxb2023011
引用本文: 贾磊,姜令强,卢鹏,等. 冰–水侧向融化过程的实验室试验研究[J]. 海洋学报,2023,45(2):42–50 doi: 10.12284/hyxb2023011
Jia Lei,Jiang Lingqiang,Lu Peng, et al. Laboratory experimental study on the lateral melting process of ice layer[J]. Haiyang Xuebao,2023, 45(2):42–50 doi: 10.12284/hyxb2023011
Citation: Jia Lei,Jiang Lingqiang,Lu Peng, et al. Laboratory experimental study on the lateral melting process of ice layer[J]. Haiyang Xuebao,2023, 45(2):42–50 doi: 10.12284/hyxb2023011

冰–水侧向融化过程的实验室试验研究

doi: 10.12284/hyxb2023011
基金项目: 国家自然科学基金(41876213,41922045);辽宁省兴辽英才计划项目(XLYC2007033);国家重点研发计划(2018YFA0605901)。
详细信息
    作者简介:

    贾磊(1998-),男,河北省邢台市人,主要从事海冰物理研究。E-mail: Jialei9805@mail.dlut.edu.cn

    通讯作者:

    卢鹏,教授,主要从事极地海冰变化研究。E-mail: lupeng@dlut.edu.cn

  • 中图分类号: P731.15

Laboratory experimental study on the lateral melting process of ice layer

  • 摘要: 为了探究冰层侧向融化过程,定量分析影响冰层侧向融化的主导因素,在低温实验室水槽内实施了浮冰融化实验。同步测量了冰底面和表面生消过程、浮冰侧向融化过程,同时记录了实验室气温、冰样内部不同深度处的冰温及开阔水域不同深度处的水温,利用相关分析方法研究了不同要素之间的关系及其对浮冰侧向融化速率的影响规律。结果表明,融冰前期冰样内部不同深度处的侧向融化缓慢且均匀,平均融化速率为0.05 mm/h;融冰中后期不同深度处的侧向融化速率显著增加且不再均匀,平均融化速率为0.15 mm/h。平均侧向融化速率与气温的相关系数较好(r=0.82),优于其与平均水温(r=0.74)和水–冰温度差(r=0.48)的相关系数。建立侧向融化速率随温度(气温、水温)和深度变化的定量关系,可以准确描述浮冰侧向融化过程的非均匀性。同时验证了进行非均匀性侧向融化试验技术的可行性,为更加接近北极真实情况考虑风速和光源条件的海冰试验奠定了基础。
  • 图  1  实验装置示意图(单位:mm)

    Fig.  1  Schematic diagram of experimental device (unit: mm)

    图  2  侧向融化观测装置图

    Fig.  2  Schematic diagram of lateral melting observation device

    图  3  试验期间的气温变化

    Fig.  3  Temperature change during the experiment

    图  4  侧向、底面以及表面融化量对比(a)和累积正气温与竖向及侧向融化量的关系(b)

    Fig.  4  Comparison of lateral, bottom and surface melting (a) and relationship between cumulative positive air temperature and vertical and lateral melt (b)

    图  5  冰–水界面位置变化

    Fig.  5  Variation of the lateral position of the ice layer

    图  6  试验期间的冰温变化

    图中黑色实线为冰底面位置

    Fig.  6  Ice temperature variation during the experiment

    The solid black line is the ice base

    图  7  试验期间不同深度处的水温

    Fig.  7  Water temperature at different depths during the experiment

    图  8  气温与平均侧向融化速率的拟合关系

    Fig.  8  Fitting relationship between temperature and mean lateral melting rate

    图  9  平均水温及水冰温差与平均侧向融化速率拟合图

    Fig.  9  Fitting diagram of average water temperature and water-ice-temperature difference with average lateral melting rate

    图  10  气温与水下不同深度处侧向融化速率的变化关系

    Fig.  10  Relationship between temperature and lateral melting rate at different depths of water

    图  11  侧向融化速率与气温和深度(a)、水温和深度(b)的变化关系

    Fig.  11  The relationship between lateral melting rate with temperature and water depth (a), water temperature and depth (b)

    表  1  冰样三面融化对比

    Tab.  1  Comparison of melting on three sides of the ice layer

    冰样位置融化厚度/cm平均融化速率/(mm·h–1融化体积占比/%
    表面80.2457.7
    底面50.1536.1
    侧面30.096.2
    下载: 导出CSV
  • [1] Deser C, Walsh J E, Timlin M S. Arctic sea ice variability in the context of recent atmospheric circulation trends[J]. Journal of Climate, 2000, 13(3): 617−633. doi: 10.1175/1520-0442(2000)013<0617:ASIVIT>2.0.CO;2
    [2] Screen J A, Simmonds I. The central role of diminishing sea ice in recent Arctic temperature amplification[J]. Nature, 2010, 464(7293): 1334−1337. doi: 10.1038/nature09051
    [3] Holland M M, Bitz C M, Tremblay B. Future abrupt reductions in the summer Arctic sea ice[J]. Geophysical Research Letters, 2006, 33(23): L23503. doi: 10.1029/2006GL028024
    [4] Overland J E, Wood K R, Wang Muyin. Warm Arctic-cold continents: climate impacts of the newly open Arctic Sea[J]. Polar Research, 2011, 30(1): 15787. doi: 10.3402/polar.v30i0.15787
    [5] Perovich D K, Polashenski C. Albedo evolution of seasonal Arctic sea ice[J]. Geophysical Research Letters, 2012, 39(8): L08501.
    [6] Malinka A, Zege E, Istomina L, et al. Reflective properties of melt ponds on sea ice[J]. The Cryosphere, 2018, 12(6): 1921−1937. doi: 10.5194/tc-12-1921-2018
    [7] Schröder D, Feltham D L, Flocco D, et al. September Arctic sea-ice minimum predicted by spring melt-pond fraction[J]. Nature Climate Change, 2014, 4(5): 353−357. doi: 10.1038/nclimate2203
    [8] Wang Q, Danilov S, Jung T, et al. Sea ice leads in the Arctic Ocean: model assessment, interannual variability and trends[J]. Geophysical Research Letters, 2016, 43(13): 7019−7027. doi: 10.1002/2016GL068696
    [9] Zubov N N. Arctic Ice[M]. San Diego: Navy Electronics Laboratory, 1963.
    [10] Josberger E G. Laminar and turbulent boundary layers adjacent to melting vertical ice walls in salt water[D]. Seattle: University of Washington, 1979.
    [11] Perovich D K. On the summer decay of a sea ice cover[D]. Seattle: University of Washington, 1983.
    [12] Steele M. Sea ice melting and floe geometry in a simple ice-ocean model[J]. Journal of Geophysical Research, 1992, 97(C11): 17729−17738. doi: 10.1029/92JC01755
    [13] 李志军, 王智群, 王庆凯, 等. 浮冰界面融化速率参数化方案的实验室研究[J]. 海洋学报, 2021, 43(7): 162−172.

    Li Zhijun, Wang Zhiqun, Wang Qingkai, et al. Laboratory study on parameterization of ice floe melt rate at ice-air and ice-water interfaces[J]. Haiyang Xuebao, 2021, 43(7): 162−172.
    [14] 雷瑞波, 李志军, 程斌, 等. 夏季北冰洋浮冰–水道热力学特征现场观测研究[J]. 极地研究, 2010, 22(3): 286−295.

    Lei Ruibo, Li Zhijun, Cheng Bin, et al. Observations on the thermodynamics mechanism of the floe-lead system in the Arctic Ocean during summer[J]. Chinese Journal of Polar Research, 2010, 22(3): 286−295.
    [15] 王庆凯, 李志军, 曹晓卫, 等. 实测冰–水侧向界面热力学融化速率[J]. 南水北调与水利科技, 2016, 14(6): 81−86.

    Wang Qingkai, Li Zhijun, Cao Xiaowei, et al. Analysis of measured thermodynamic melting rate of lateral interface between ice and water[J]. South-to-North Water Transfers and Water Science & Technology, 2016, 14(6): 81−86.
    [16] 王庆凯, 方贺, 李志军, 等. 湖冰侧、底部融化现场观测与热力学分析[J]. 水利学报, 2018, 49(10): 1207−1215.

    Wang Qingkai, Fang He, Li Zhijun, et al. Field investigations on lateral and bottom melting of lake ice and thermodynamic analysis[J]. Journal of Hydraulic Engineering, 2018, 49(10): 1207−1215.
    [17] 艾润冰, 谢涛, 刘彬贤, 等. 基于气温的浮冰侧向融化速率参数化方案实验研究[J]. 海洋学报, 2020, 42(5): 150−158.

    Ai Runbing, Xie Tao, Liu Binxian, et al. An experimental study on parametric scheme of lateral melting rate of ice layer based on temperature[J]. Haiyang Xuebao, 2020, 42(5): 150−158.
    [18] Tsamados M, Feltham D, Petty A, et al. Processes controlling surface, bottom and lateral melt of Arctic sea ice in a state of the art sea ice model[J]. Philosophical transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 373(2052): 20140167. doi: 10.1098/rsta.2014.0167
    [19] Bilello M A. Maximum thickness and subsequent decay of lake, river, and fast sea ice in Canada and Alaska[R]. Hanover: U. S. Army, Corps of Engineers, Cold Regions Research and Engineering Laboratory, 1980.
    [20] Josberger E G, Martin S. A laboratory and theoretical study of the boundary layer adjacent to a vertical melting ice wall in salt water[J]. Journal of Fluid Mechanics, 1981, 111: 439−473. doi: 10.1017/S0022112081002450
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  310
  • HTML全文浏览量:  62
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-07
  • 修回日期:  2022-08-24
  • 网络出版日期:  2022-11-11
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回