留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大洋表层沉积物中甲烷代谢古菌群落的组成及分布特征

刘皓 许秋彤 王春生 荆红梅

刘皓,许秋彤,王春生,等. 大洋表层沉积物中甲烷代谢古菌群落的组成及分布特征[J]. 海洋学报,2023,45(1):80–88 doi: 10.12284/hyxb2023010
引用本文: 刘皓,许秋彤,王春生,等. 大洋表层沉积物中甲烷代谢古菌群落的组成及分布特征[J]. 海洋学报,2023,45(1):80–88 doi: 10.12284/hyxb2023010
Liu Hao,Xu Qiutong,Wang Chunsheng, et al. Composition and distribution of methane metabolic archaea in oceanic surface sediments[J]. Haiyang Xuebao,2023, 45(1):80–88 doi: 10.12284/hyxb2023010
Citation: Liu Hao,Xu Qiutong,Wang Chunsheng, et al. Composition and distribution of methane metabolic archaea in oceanic surface sediments[J]. Haiyang Xuebao,2023, 45(1):80–88 doi: 10.12284/hyxb2023010

大洋表层沉积物中甲烷代谢古菌群落的组成及分布特征

doi: 10.12284/hyxb2023010
基金项目: 海南省重大科技计划(ZDKJ2019011);海南省自然科学基金高层次人才项目(420RC677);国家重点研发计划(2018YFC0309805);国家自然科学基金面上项目(41776147)。
详细信息
    作者简介:

    刘皓(1981-),男,吉林省长春市人,助理研究员,从事海洋微生物分子生态研究。E-mail: liuh@idsse.ac.cn

    许秋彤(1989-),男,安徽省淮北市人,助理工程师,从事海洋生态研究。E-mail: xuqiutong@scsio.ac.cn

    通讯作者:

    王春生(1964—), 男, 浙江省台州市人,研究员,主要从事海洋生态学研究。E-mail: wangsio@sio.org.cn

    荆红梅(1977—),女,河南省新乡市人,研究员,主要从事海洋微生物分子生态学研究。E-mail: hmjing@idsse.ac.cn

  • 中图分类号: Q938.2

Composition and distribution of methane metabolic archaea in oceanic surface sediments

  • 摘要: 海洋沉积物中的甲烷代谢微生物是甲烷循环的关键参与者,其代谢过程对大气甲烷浓度及全球气候变化具有显著影响,研究其在全球大洋沉积物中的组成及分布特征是探究微生物介导甲烷循环的基础。采用焦磷酸454高通量测序测定甲烷代谢保守功能基因mcrA(Methyl coenzyme–M reductase A)分析全球大洋沉积物中甲烷代谢微生物群落的组成和多样性;结合荧光实时定量PCR技术检测了古菌和甲烷代谢古菌的丰度分布特征。与其他海洋生境对比,大洋沉积物中甲烷代谢古菌群落结构单一,大西洋和印度洋的α多样性指数显著高于太平洋(p<0.05)。在大洋沉积物样品中鉴定到3个目的甲烷代谢古菌,即甲烷杆菌目(Methanobacteriales)、甲烷八叠球菌目(Methanosarcinales)和甲烷微菌目(Methanomicrobiales),其中甲烷微菌目占绝对优势,并主要由一簇未知类群(暂名Oceanic Sediments Dominant group,OSD group)组成。大洋沉积物的古菌16S rRNA基因丰度(湿重,下同)平均为8.81×106 copies/g,大西洋的低于印度洋和太平洋;马里亚纳海沟基因丰度低于南海北部,且随着采样深度增加而呈降低趋势。大洋沉积物的mcrA基因丰度为1.38×103~8.25×104 copies/g。基因丰度大西洋最高,太平洋次之,印度洋最低;马里亚纳海沟略高于南海。本研究发现,相较于冷泉、热液、近海河口等海洋生境,大洋沉积物中甲烷代谢古菌丰度低且群落结构单一,不同海区样品间具有极高的相似性;同时发现OSD group是全球大洋沉积物样品的绝对优势类群,其与已知类群序列亲缘关系均较远,分类进化地位尚不明晰,值得进一步研究。
  • 图  1  各大洋采样站位分布

    Fig.  1  Distribution of sampling stations in different oceans

    图  2  大洋沉积物甲烷代谢古菌群落的α多样性指数

    *代表 p<0.05

    Fig.  2  α-diversity index of the methane metabolic microbes in different ocean sediments

    * Represents p<0.05

    图  3  大洋沉积物样品中甲烷代谢古菌的群落结构

    Fig.  3  Community structure of methane metabolic archaea in different ocean sediments

    图  4  基于甲烷代谢古菌mcrA基因核酸序列构建的系统进化树

    Fig.  4  The phylogenetic tree based on nucleic acid sequence of mcrA gene of methane metabolizing archaea

    图  5  大洋沉积物中的古菌16S rRNA和甲烷代谢古菌mcrA基因的丰度分布

    Fig.  5  Distribution of abundance of the archaeal 16S rRNA gene and methane metabolic mcrA gene in different marine sediments

    表  1  沉积物样品的采样环境参数

    Tab.  1  Sampling parameters in different ocean sediments

    编号海区纬度经度站位深度/m采样时间
    A1南大西洋中脊13.589 6°S14.519 3°W3 2032012年7月25日
    A2南大西洋中脊13.355 1°S14.311 1°W3 1422012年7月26日
    A3南大西洋中脊13.593 5°S14.519 2°W3 1492012年7月27日
    A4南大西洋中脊13.594 6°S14.517 7°W3 0732012年7月29日
    A5南大西洋中脊14.056 6°S14.354 8°W1 5982012年8月8日
    A6南大西洋中脊19.347 3°S11.923 2°W2 5972012年9月25日
    A7南大西洋中脊19.260 7°S11.919 8°W2 6212012年9月27日
    A8南大西洋中脊19.408 5°S11.885 1°W2 4002012年9月27日
    A9南大西洋中脊19.260 7°S11.930 2°W2 5592012年9月30日
    I10西北印度洋脊3.710 6°N63.657 3°E3 6902013年4月24日
    I11西北印度洋脊5.716 8°N61.462 1°E4 0712013年4月28日
    I12西北印度洋脊6.363 2°N60.525 5°E2 9892013年5月1日
    I13西北印度洋脊9.066 1°N58.252 7°E2 8442013年5月6日
    I14西北印度洋脊9.774 7°N57.581 9°E2 0882013年5月9日
    P15西太平洋11.006 5°N141.952 2°E7 0152012年6月30日
    P16西太平洋11.006 5°N141.952 2°E7 0152012年6月30日
    P17西太平洋11.006 5°N141.952 2°E7 0152012年6月30日
    P18西太平洋18.989 1°N113.924 1°E1 0152015年6月29日
    P19西太平洋18.464 1°N113.998 1°E3 6812015年6月30日
    P20西太平洋18.563 9°N113.674 3°E3 7432015年7月2日
    注:P15–P17号样品,沉积物采集深度分别为0~2 cm、2~5 cm、5~10 cm;其余表层沉积物采集深度均为0~5 cm。
    下载: 导出CSV
  • [1] Niu Mingyang, Liang Wenyue, Wang Fengping. Methane biotransformation in the ocean and its effects on climate change: a review[J]. Science China Earth Sciences, 2018, 61(12): 1697−1713. doi: 10.1007/s11430-017-9299-4
    [2] Ferry J G, Lessner D J. Methanogenesis in marine sediments[J]. Annals of the New York Academy of Sciences, 2008, 1125(1): 147−157. doi: 10.1196/annals.1419.007
    [3] Hartmann D L, Klein Tank A M G, Rusticucci M, et al. Climate Change 2013: the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2014.
    [4] Lowe D C. Global change: a green source of surprise[J]. Nature, 2006, 439(7073): 148−149. doi: 10.1038/439148a
    [5] Niemann H, Lösekann T, de Beer D, et al. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink[J]. Nature, 2006, 443(7113): 854−858. doi: 10.1038/nature05227
    [6] Giovannell D, d’Errico G, Fiorentino F, et al. Diversity and distribution of prokaryotes within a shallow-water pockmark field[J]. Frontiers in Microbiology, 2016, 7: 941.
    [7] Tu T H, Wu Liwei, Lin Y S, et al. Microbial community composition and functional capacity in a terrestrial ferruginous, sulfate-depleted mud volcano[J]. Frontiers in Microbiology, 2017, 8: 2137. doi: 10.3389/fmicb.2017.02137
    [8] Jing Hongmei, Wang Ruonan, Jiang Qiuyun, et al. Anaerobic methane oxidation coupled to denitrification is an important potential methane sink in deep-sea cold seeps[J]. Science of the Total Environment, 2020, 748: 142459. doi: 10.1016/j.scitotenv.2020.142459
    [9] Inagaki F, Kuypers M M M, Tsunogai U, et al. Microbial community in a sediment-hosted CO2 lake of the southern Okinawa Trough hydrothermal system[J]. Proceedings of the National Academy of Sciences, 2006, 103(38): 14164−14169. doi: 10.1073/pnas.0606083103
    [10] Boetius A, Wenzhöfer F. Seafloor oxygen consumption fuelled by methane from cold seeps[J]. Nature Geoscience, 2013, 6(9): 725−734. doi: 10.1038/ngeo1926
    [11] D’Hondt S, Rutherford S, Spivack A J. Metabolic activity of subsurface life in deep-sea sediments[J]. Science, 2002, 295(5562): 2067−2070. doi: 10.1126/science.1064878
    [12] Chen Jinquan, Wang Fengping, Zheng Yanping, et al. Investigation of the methanogen-related archaeal population structure in shallow sediments of the Pearl River Estuary, Southern China[J]. Journal of Basic Microbiology, 2014, 54(6): 482−490. doi: 10.1002/jobm.201200172
    [13] Niu Mingyang, Fan Xibei, Zhuang Guangchao, et al. Methane-metabolizing microbial communities in sediments of the Haima cold seep area, northwest slope of the South China Sea[J]. FEMS Microbiology Ecology, 2017, 93(9): fix101.
    [14] Yang Shanshan, Lü Yongxin, Liu Xipeng, et al. Genomic and enzymatic evidence of acetogenesis by anaerobic methanotrophic archaea[J]. Nature Communications, 2020, 11(1): 3941. doi: 10.1038/s41467-020-17860-8
    [15] Chen Ye, Li Siqi, Xu Xiaoqing, et al. Characterization of microbial communities in sediments of the South Yellow Sea[J]. Journal of Oceanology and Limnology, 2021, 39(3): 846−864. doi: 10.1007/s00343-020-0106-6
    [16] Mihajlovski A, Alric M, Brugère J F. A putative new order of methanogenic archaea inhabiting the human gut, as revealed by molecular analyses of the mcrA gene[J]. Research in Microbiology, 2008, 159(7/8): 516−521.
    [17] Dridi B, Raoult D, Drancourt M. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification of Archaea: towards the universal identification of living organisms[J]. Acta Pathologica Microbiologica et Immunologica Scandinavica, 2012, 120(2): 85−91. doi: 10.1111/j.1600-0463.2011.02833.x
    [18] Wise M G, McArthur J V, Shimkets L J. Methanotroph diversity in landfill soil: isolation of novel type I and type II methanotrophs whose presence was suggested by culture-independent 16S ribosomal DNA analysis[J]. Applied and Environmental Microbiology, 1999, 65(11): 4887−4897. doi: 10.1128/AEM.65.11.4887-4897.1999
    [19] Raghoebarsing A A, Pol A, van de Pas-Schoonen K T, et al. A microbial consortium couples anaerobic methane oxidation to denitrification[J]. Nature, 2006, 440(7086): 918−921. doi: 10.1038/nature04617
    [20] Dhillon A, Lever M, Lloyd K G, et al. Methanogen diversity evidenced by molecular characterization of methyl coenzyme M reductase A (mcrA) genes in hydrothermal sediments of the Guaymas Basin[J]. Applied and Environmental Microbiology, 2005, 71(8): 4592−4601. doi: 10.1128/AEM.71.8.4592-4601.2005
    [21] 范习贝, 梁前勇, 牛明杨, 等. 中国南海北部陆坡沉积物古菌多样性及丰度分析[J]. 微生物学通报, 2017, 44(7): 1589−1601. doi: 10.13344/j.microbiol.china.170159

    Fan Xibei, Liang Qianyong, Niu Mingyang, et al. The diversity and richness of archaea in the northern continental slope of South China Sea[J]. Microbiology China, 2017, 44(7): 1589−1601. doi: 10.13344/j.microbiol.china.170159
    [22] Prouty N G, Campbell P L, Close H G, et al. Molecular indicators of methane metabolisms at cold seeps along the United States Atlantic Margin[J]. Chemical Geology, 2020, 543: 119603. doi: 10.1016/j.chemgeo.2020.119603
    [23] Santoro A E, Dupont C L, Richter R A, et al. Genomic and proteomic characterization of “Candidatus Nitrosopelagicus brevis”: an ammonia-oxidizing archaeon from the open ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(4): 1173−1178. doi: 10.1073/pnas.1416223112
    [24] Hammer Ø, Harper D A, Ryan P D. PAST: paleontological statistics software package for education and data analysis[J]. Palaeontologia Electronica, 2001, 4(1): 1−9.
    [25] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870−1874. doi: 10.1093/molbev/msw054
    [26] 郭文捷. 热带西太平洋深海冷泉−海山极端环境微生物多样性研究[D]. 青岛: 青岛大学, 2017.

    Guo Wenjie. Microbial community diversity of the deep sea cold seep and seamount-extreme environments in tropical western Pacific[D]. Qingdao: Qingdao University, 2017.
    [27] Orphan V J, Jahnke L L, Embaye T, et al. Characterization and spatial distribution of methanogens and methanogenic biosignatures in hypersaline microbial mats of Baja California[J]. Geobiology, 2008, 6(4): 376−393. doi: 10.1111/j.1472-4669.2008.00166.x
    [28] Vigneron A, L’Haridon S, Godfroy A, et al. Evidence of active methanogen communities in shallow sediments of the Sonora Margin cold seeps[J]. Applied and Environmental Microbiology, 2015, 81(10): 3451−3459. doi: 10.1128/AEM.00147-15
    [29] Postec A, Quéméneur M, Bes M, et al. Microbial diversity in a submarine carbonate edifice from the serpentinizing hydrothermal system of the Prony Bay (New Caledonia) over a 6-year period[J]. Frontiers in Microbiology, 2015, 6: 857.
    [30] Zhou Zhichao, Chen Jing, Cao Huiluo, et al. Analysis of methane-producing and metabolizing archaeal and bacterial communities in sediments of the northern South China Sea and coastal Mai Po Nature Reserve revealed by PCR amplification of mcrA and pmoA genes[J]. Frontiers in Microbiology, 2015, 5: 789.
    [31] 李涛, 王鹏, 汪品先. 南海南部陆坡表层沉积物细菌和古菌多样性[J]. 微生物学报, 2008, 48(3): 323−329. doi: 10.3321/j.issn:0001-6209.2008.03.009

    Li Tao, Wang Peng, Wang Pinxian. Bacterial and archaeal diversity in surface sediment from the south slope of the South China Sea[J]. Acta Microbiologica Sinica, 2008, 48(3): 323−329. doi: 10.3321/j.issn:0001-6209.2008.03.009
    [32] 王风平, 周悦恒, 张新旭, 等. 深海微生物多样性[J]. 生物多样性, 2013, 21(4): 445−455.

    Wang Fengping, Zhou Yueheng, Zhang Xinxu, et al. Biodiversity of deep-sea microorganisms[J]. Biodiversity Science, 2013, 21(4): 445−455.
    [33] Claypool G E, Kvenvolden K A. Methane and other hydrocarbon gases in marine sediment[J]. Annual Review of Earth and Planetary Sciences, 1983, 11(1): 299−327. doi: 10.1146/annurev.ea.11.050183.001503
    [34] Danovaro R, Molari M, Corinaldesi C, et al. Macroecological drivers of archaea and bacteria in benthic deep-sea ecosystems[J]. Science Advances, 2016, 2(4): e1500961. doi: 10.1126/sciadv.1500961
    [35] Jing Hongmei, Xia Xiaomin, Liu Hongbin, et al. Anthropogenic impact on diazotrophic diversity in the mangrove rhizosphere revealed by nifH pyrosequencing[J]. Frontiers in Microbiology, 2015, 6: 1172.
    [36] Nunoura T, Nishizawa M, Kikuchi T, et al. Molecular biological and isotopic biogeochemical prognoses of the nitrification-driven dynamic microbial nitrogen cycle in hadopelagic sediments[J]. Environmental Microbiology, 2013, 15(11): 3087−3107.
    [37] Nunoura T, Takaki Y, Kazama H, et al. Microbial diversity in deep-sea methane seep sediments presented by SSU rRNA gene tag sequencing[J]. Microbes and Environments, 2012, 27(4): 382−390. doi: 10.1264/jsme2.ME12032
    [38] Yanagawa K, Sunamura M, Lever M A, et al. Niche separation of methanotrophic archaea (ANME-1 and -2) in methane-seep sediments of the eastern Japan Sea offshore Joetsu[J]. Geomicrobiology Journal, 2011, 28(2): 118−129. doi: 10.1080/01490451003709334
    [39] Nunoura T, Oida H, Nakaseama M, et al. Archaeal Diversity and distribution along thermal and geochemical gradients in hydrothermal sediments at the Yonaguni Knoll IV hydrothermal field in the southern Okinawa Trough[J]. Applied and Environmental Microbiology, 2010, 76(4): 1198−1211. doi: 10.1128/AEM.00924-09
    [40] Schippers A, Kock D, Höft C, et al. Quantification of microbial communities in subsurface marine sediments of the Black Sea and off Namibia[J]. Frontiers in Microbiology, 2012, 3: 16.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  441
  • HTML全文浏览量:  168
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-10
  • 修回日期:  2022-07-04
  • 网络出版日期:  2022-08-05
  • 刊出日期:  2023-01-09

目录

    /

    返回文章
    返回