留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多层感知器的风涌浪分离方法

徐啸 陶爱峰 韩雪 潘锡山 杨伊妮

徐啸,陶爱峰,韩雪,等. 基于多层感知器的风涌浪分离方法[J]. 海洋学报,2023,45(2):1–12 doi: 10.12284/hyxb2023001
引用本文: 徐啸,陶爱峰,韩雪,等. 基于多层感知器的风涌浪分离方法[J]. 海洋学报,2023,45(2):1–12 doi: 10.12284/hyxb2023001
Xu Xiao,Tao Aifeng,Han Xue, et al. Separation method of wind-wave and swell based on the multilayer perceptron[J]. Haiyang Xuebao,2023, 45(2):1–12 doi: 10.12284/hyxb2023001
Citation: Xu Xiao,Tao Aifeng,Han Xue, et al. Separation method of wind-wave and swell based on the multilayer perceptron[J]. Haiyang Xuebao,2023, 45(2):1–12 doi: 10.12284/hyxb2023001

基于多层感知器的风涌浪分离方法

doi: 10.12284/hyxb2023001
基金项目: 国家重点研发计划(2022YFE0104500);国家自然科学基金(52271271);水利部重大科技项目(SKS-2022025)
详细信息
    作者简介:

    徐啸(1995-),男,江苏省扬州市人,研究方向为波浪预报。E-mail: 15150685669@hhu.edu.cn

    通讯作者:

    陶爱峰,男,教授,主要从事水波动力学研究。E-mail: aftao@hhu.edu.cn

  • 中图分类号: P731.22

Separation method of wind-wave and swell based on the multilayer perceptron

  • 摘要: 风涌浪分离是研究风浪、涌浪各自特性的基础,但受限于海浪谱数据的匮乏,基于海浪谱的风涌浪分离方法难以普及应用,有效的解决办法是采用波浪观测中容易获取的基本波要素进行风涌浪分离。现有方法无法利用基本波要素全面计算出风浪、涌浪的比例及其特征参数,为此本文将机器学习引入到风涌浪分离中,以多层感知器模型为基础,提出了一种利用基本波要素、风要素准确计算出风涌浪参数的方法。该方法需要每个测站提供至少466笔、建议766笔及以上的实测波浪数据作为训练样本,适用于台湾海峡3个测站,在计算精度上显著优于基于海浪频谱的传统风涌浪分离方法,可为本海域缺乏海浪谱的测站提供替代性的风涌浪计算方案,有助于扩大实测风涌浪资料的来源,进而加强风涌浪分布特性以及预警预报研究。
  • 图  1  波浪站位置(a)和二维谱法的可视化展示(b)

    Fig.  1  Location of the buoy (a) and visualization of 2D spectrum method (b)

    图  2  风浪有效波高计算模型的结构示意图

    Fig.  2  Structure diagram of calculation model of the significant height of wind-wave

    图  3  训练集与测试集的划分

    Fig.  3  Division of training set and test set

    图  4  各多层感知器模型的平均相对误差(MRE)随模型结构的变化

    子图a、b、c、d分别对应于模型一、二、三、四

    Fig.  4  Variation of the mean relative error (MRE) of each multilayer perceptron model with the model structure

    Subgraphs a, b, c and d correspond to model 1, 2, 3 and 4 respectively

    图  5  多层感知器模型在不同测站的误差指标

    Fig.  5  Error indices of multilayer perceptron models in different stations

    图  6  风浪平均周期预报值与实测值对比

    Fig.  6  Contrast of predicted mean wind-wave period with measured data

    图  7  各多层感知器模型的平均绝对误差(a)和平均相对误差(b)随训练样本量的变化

    Fig.  7  Variation of mean absolute error (a) and mean relative error (b) of multilayer perceptron models with training set size

    图  8  各多层感知器模型的平均绝对误差随测试样本量的变化

    Fig.  8  Variation of mean absolute error of multilayer perceptron models with test set size

    图  9  台风期间多层感知器法风涌浪参数计算值与实测值对比

    Fig.  9  Comparision of measured wave data with wind-wave and swell computation values using multilayer perceptron method during typhoon passage

    图  10  不同方法计算出的波参数与实测数据对比

    Fig.  10  Comparison of the wave parameters calculated by different methods with measured data

    表  1  测站数据信息表

    Tab.  1  Statistics of station data information

    站名数据时间范围方向谱数据量风、浪要素数据量重叠时段数据总量水深/m
    M12016年7月1日至9月30日2 0302 2082 03058
    M22016年7月1日至9月15日1 1851 8261 18525
    M32016年7月1日至9月27日2 1302 1302 13027
    下载: 导出CSV

    表  2  多层感知器模型的输入输出设置

    Tab.  2  Input and output settings of multilayer perceptron model

    模型命名输入因子输出因子
    模型1风速,风向,混合浪波高,混合浪波向风浪有效波高
    模型2风速,风向,混合浪波高,混合浪波向涌浪有效波高
    模型3风速,风向,混合浪周期,混合浪波向风浪平均周期
    模型4风速,风向,混合浪周期,混合浪波向涌浪平均周期
    下载: 导出CSV

    表  3  四变量输出模型与单变量输出模型的平均相对误差(MRE)对比

    Tab.  3  Comparision of mean relative error (MRE) between 4 output model and 1 output model

    预报模式风浪有效波高涌浪有效波高风浪平均周期涌浪平均周期
    四变量预报12.7%6.6%13.1%6.6%
    单变量预报10.1%4.4%10.3%4.9%
    下载: 导出CSV

    表  4  不同风涌浪分离方法的误差指标

    Tab.  4  Error indices of different separation methods of wind-wave and swell

    目标变量风涌浪分离方法相关系数平均绝对误差平均相对误差
    风浪有效波高MLP法0.970.08 m10.1%
    PM法0.980.28 m50.9%
    WH法0.830.28 m20.3%
    改进的WH法0.860.54 m56.7%
    JP法0.770.30 m50.2%
    林伊楠等[11]的方法0.960.34 m45.6%
    涌浪有效波高MLP法0.990.05 m4.4%
    PM法0.600.42 m38.9%
    WH法0.920.20 m17.9%
    改进的WH法0.760.63 m60.6%
    JP法0.550.24 m18.5%
    林伊楠等[11]的方法0.830.43 m41.7%
    风浪平均周期MLP法0.820.47 s10.3%
    PM法0.570.85 s17.0%
    WH法0.181.20 s25.9%
    改进的WH法0.251.00 s26.1%
    JP法0.452.96 s67.3%
    林伊楠等[11]的方法0.370.83 s18.9%
    涌浪平均周期 MLP法0.920.35 s4.9%
    PM法0.432.28 s34.6%
    WH法0.800.77 s11.8%
    改进的WH法0.733.37 s52.5%
    JP法0.371.53 s22.4%
    林伊楠等[11]的方法0.282.52 s40.4%
    下载: 导出CSV
  • [1] Tao Aifeng, Yan Jin, Pei Ye, et al. Swells of the East China Sea[J]. Journal of Ocean University of China, 2017, 16(4): 674−682. doi: 10.1007/s11802-017-3406-5
    [2] 徐啸, 陶爱峰, 李雪丁, 等. 基于实测数据的台湾海峡中部波浪特征分析[J]. 热带海洋学报, 2021, 40(1): 12−20.

    Xu Xiao, Tao Aifeng, Li Xueding, et al. Analysis of wave characteristics in the central Taiwan Strait based on measured data[J]. Journal of Tropical Oceanography, 2021, 40(1): 12−20.
    [3] 汪炳祥, 常瑞芳, 王一飞. 风浪与涌浪的划分判据[J]. 黄渤海海洋, 1990, 8(1): 16−24.

    Wang Bingxiang, Chang Ruifang, Wang Yifei. Criteria of differentiating swell from wind waves[J]. Journal of Oceanography of Huanghai & Bohai Seas, 1990, 8(1): 16−24.
    [4] 郭佩芳, 施平, 王华, 等. 划分风浪与涌浪的一个新判据—海浪成份及其在南海的应用[J]. 青岛海洋大学学报, 1997, 27(2): 131−137.

    Guo Peifang, Shi Ping, Wang Hua, et al. A new criterion between wind wave and swell wave-by mixed wave composition factors and its application to the South China Sea[J]. Journal of Ocean University of Qingdao, 1997, 27(2): 131−137.
    [5] Yang Zheng, Song Lili, Mu Lin, et al. Separation of wind-sea and swell wave heights using altimeter data[C]//2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. Brussels, Belgium: IEEE, 2021: 7564−7567.
    [6] Earle M D. Development of algorithms for separation of sea and swell[R]. [S.l.]: National Data Buoy Center Tech, 1984: 53.
    [7] Wang D W, Hwang P A. An operational method for separating wind sea and swell from ocean wave spectra[J]. Journal of Atmospheric and Oceanic Technology, 2001, 18(12): 2052−2062. doi: 10.1175/1520-0426(2001)018<2052:AOMFSW>2.0.CO;2
    [8] Hwang P A, Ocampo-Torres F J, García-Nava H. Wind sea and swell separation of 1D wave spectrum by a spectrum integration method[J]. Journal of Atmospheric and Oceanic Technology, 2012, 29(1): 116−128. doi: 10.1175/JTECH-D-11-00075.1
    [9] Portilla J, Ocampo-Torres F J, Monbaliu J. Spectral partitioning and identification of wind sea and swell[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(1): 107−122. doi: 10.1175/2008JTECHO609.1
    [10] 朱绍华, 于文太, 李广帅, 等. 基于双峰海浪谱的风浪和涌浪分离应用研究[J]. 中国造船, 2017, 58(4): 160−167. doi: 10.3969/j.issn.1000-4882.2017.04.019

    Zhu Shaohua, Yu Wentai, Li Guangshuai, et al. Separation of wind wave and swell based on double peak spectrum[J]. Shipbuilding of China, 2017, 58(4): 160−167. doi: 10.3969/j.issn.1000-4882.2017.04.019
    [11] 林伊楠, 陶爱峰, 李雪丁, 等. 台湾海峡风涌浪分离方法研究[J]. 海洋学报, 2019, 41(11): 25−34.

    Lin Yi’nan, Tao Aifeng, Li Xueding, et al. Study on separation method of wind-wave and swell in the Taiwan Strait[J]. Haiyang Xuebao, 2019, 41(11): 25−34.
    [12] Hanson J L, Phillips O M. Automated analysis of ocean surface directional wave spectra[J]. Journal of Atmospheric and Oceanic Technology, 2001, 18(2): 277−293. doi: 10.1175/1520-0426(2001)018<0277:AAOOSD>2.0.CO;2
    [13] 李水清, 赵栋梁. 风浪和涌浪分离方法的比较[J]. 海洋学报, 2012, 34(2): 23−29.

    Li Shuiqing, Zhao Dongliang. Comparisons on partitioning techniques to identify wind-wave and swell[J]. Haiyang Xuebao, 2012, 34(2): 23−29.
    [14] 国家市场监督管理总局, 国家标准化管理委员会. GB/T 14914.2-2019, 海洋观测规范 第2部分: 海滨观测[S]. 北京: 中国标准出版社, 2019.

    State Administration of Market Supervision and Administration, State Standardization Administration Commission. GB/T 14914.2-2019, The specification for marine observation-Part 2: offshore observation[S]. Beijing: Standards Press of China, 2019.
    [15] Meng Fan, Song Tao, Xu Danya, et al. Forecasting tropical cyclones wave height using bidirectional gated recurrent unit[J]. Ocean Engineering, 2021, 234: 108795. doi: 10.1016/j.oceaneng.2021.108795
    [16] Nikoo M R, Kerachian R, Alizadeh M R. A fuzzy KNN-based model for significant wave height prediction in large lakes[J]. Oceanologia, 2018, 60(2): 153−168. doi: 10.1016/j.oceano.2017.09.003
    [17] Komen G J, Hasselmann K, Hasselmann K. On the existence of a fully developed wind-sea spectrum[J]. Journal of Physical Oceanography, 1984, 14(8): 1271−1285. doi: 10.1175/1520-0485(1984)014<1271:OTEOAF>2.0.CO;2
    [18] Tolman H L, Abdolali A, Accensi M, et al. User manual and system documentation of WAVEWATCH III (R) version 6.07[M]. USA: NOAA, 2019.
    [19] 张驰, 郭媛, 黎明. 人工神经网络模型发展及应用综述[J]. 计算机工程与应用, 2021, 57(11): 57−69. doi: 10.3778/j.issn.1002-8331.2102-0256

    Zhang Chi, Guo Yuan, Li Ming. Review of development and application of artificial neural network models[J]. Computer Engineering and Applications, 2021, 57(11): 57−69. doi: 10.3778/j.issn.1002-8331.2102-0256
    [20] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.

    Zhou Zhihua. Machine Learning[M]. Beijing: Tsinghua University Press, 2016.
    [21] Nair V, Hinton G E. Rectified linear units improve restricted Boltzmann machines[C]// Proceedings of the 27th International Conference on International Conference on Machine Learning. Haifa, Israel: Omnipress, 2010.
    [22] Berbić J, Ocvirk E, Carević D, et al. Application of neural networks and support vector machine for significant wave height prediction[J]. Oceanologia, 2017, 59(3): 331−349. doi: 10.1016/j.oceano.2017.03.007
    [23] Fan Shuntao, Xiao Nianhao, Dong Sheng. A novel model to predict significant wave height based on long short-term memory network[J]. Ocean Engineering, 2020, 205: 107298. doi: 10.1016/j.oceaneng.2020.107298
    [24] Kaloop M R, Kumar D, Zarzoura F, et al. A wavelet-particle swarm optimization-extreme learning machine hybrid modeling for significant wave height prediction[J]. Ocean Engineering, 2020, 213: 107777. doi: 10.1016/j.oceaneng.2020.107777
    [25] 王燕, 钟建, 张志远. 支持向量回归的机器学习方法在海浪预测中的应用[J]. 海洋预报, 2020, 37(3): 29−34. doi: 10.11737/j.issn.1003-0239.2020.03.004

    Wang Yan, Zhong Jian, Zhang Zhiyuan. Application of support vector regression in significant wave height forecasting[J]. Marine forecasts, 2020, 37(3): 29−34. doi: 10.11737/j.issn.1003-0239.2020.03.004
    [26] 李本霞, 吴淑萍, 邢闯, 等. 近海近岸高精度海浪业务化数值预报系统[J]. 海洋预报, 2010, 27(5): 1−6. doi: 10.3969/j.issn.1003-0239.2010.05.001

    Li Benxia, Wu Shuping, Xing Chuang, et al. High precision operational numerical prediction system for offshore and nearshore waves[J]. Marine Forecasts, 2010, 27(5): 1−6. doi: 10.3969/j.issn.1003-0239.2010.05.001
    [27] Aertsen W, Kint V, Van Orshoven J, et al. Comparison and ranking of different modelling techniques for prediction of site index in mediterranean mountain forests[J]. Ecological Modelling, 2010, 221(8): 1119−1130. doi: 10.1016/j.ecolmodel.2010.01.007
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  595
  • HTML全文浏览量:  220
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-22
  • 修回日期:  2022-07-23
  • 网络出版日期:  2022-10-19
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回