留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于参数化风场的浙江沿海风暴潮数值模拟

罗佳敏 姜云鹏 庞亮 冯钰栋

罗佳敏,姜云鹏,庞亮,等. 基于参数化风场的浙江沿海风暴潮数值模拟[J]. 海洋学报,2022,44(10):20–34 doi: 10.12284/hyxb2022200
引用本文: 罗佳敏,姜云鹏,庞亮,等. 基于参数化风场的浙江沿海风暴潮数值模拟[J]. 海洋学报,2022,44(10):20–34 doi: 10.12284/hyxb2022200
Luo Jiamin,Jiang Yunpeng,Pang Liang, et al. Numerical simulation of storm surge in the coast of Zhejiang based on parametric wind field model[J]. Haiyang Xuebao,2022, 44(10):20–34 doi: 10.12284/hyxb2022200
Citation: Luo Jiamin,Jiang Yunpeng,Pang Liang, et al. Numerical simulation of storm surge in the coast of Zhejiang based on parametric wind field model[J]. Haiyang Xuebao,2022, 44(10):20–34 doi: 10.12284/hyxb2022200

基于参数化风场的浙江沿海风暴潮数值模拟

doi: 10.12284/hyxb2022200
基金项目: 国家自然科学基金−山东联合基金(U1706226)。
详细信息
    作者简介:

    罗佳敏(1997-),女,浙江省台州市人,主要研究方向为风暴潮数值模拟。E-mail:15267207258@163.com

    姜云鹏(1981-),男,山东省烟台市人,副研究员,主要从事港口工程研究。E-mail:jyp1220@163.com

    通讯作者:

    庞亮,副教授,主要研究方向为极端海洋环境预测及风险评估。E-mail:pang@ouc.edu.cn

  • 中图分类号: P731.23

Numerical simulation of storm surge in the coast of Zhejiang based on parametric wind field model

  • 摘要: 针对台风参数化风场模型中最大风速半径$({R}_{\mathrm{m}\mathrm{a}\mathrm{x}})$和径向气压分布系数$(B)$两个关键参数,以0216(“森拉克”台风)和0414(“云娜”台风)两场台风为例,采用多种$ {R}_{\mathrm{m}\mathrm{a}\mathrm{x}} $$ B $计算方法的组合方案,再现台风过程,并提取3处观测站点的模拟数据,与实测结果进行比对。将所得的台风风场作为风暴潮模型的驱动风场,利用MIKE 21模型进行浙江沿海两场台风的风暴潮数值模拟,结合实测资料,验证并分析天文潮位和风暴潮增水水位。结果表明,本文选取的参数化风场模型适用于计算影响浙江海域的台风风场,以此为基础建立的风暴潮模型的模拟结果满足精度要求。
  • 图  1  台风轨迹及气象站实测站点

    Fig.  1  Track of typhoon and location of weather observation sites

    图  2  0216号台风风速数值模拟结果与实测对比

    图中时间均采用世界时(UTC)

    Fig.  2  Comparison of Typhoon 0216 wind speed between simulated and observed results

    The time in the figure is universal time (UTC)

    图  3  0414号台风风速数值模拟结果与实测对比

    图中时间均采用世界时(UTC)

    Fig.  3  Comparison of Typhoon 0414 wind speed between simulated and observed results

    The time in the figure is universal time (UTC)

    图  4  模型水深图和网格图

    Fig.  4  Water depth map and grid map of modle

    图  5  台风路径及验证站点

    Fig.  5  Track of typhoon and location of verification sites

    图  6  0216号台风期间天文潮位数值模拟结果与潮汐表对比

    潮位起算面:平均海平面;图中时间均采用世界时(UTC)

    Fig.  6  Comparison of tide level between simulated and tide table value during Typhoon 0216

    Starting surface of tide: mean sea level; the time in the figure is universal time (UTC)

    图  7  0414号台风期间天文潮位数值模拟结果与潮汐表对比

    潮位起算面:平均海平面;图中时间均采用世界时(UTC)

    Fig.  7  Comparison of tide level between simulated value and tide table value during Typhoon 0414

    Starting surface of tide: mean sea level; the time in the figure is universal time (UTC)

    图  8  0216号台风期间增水水位数值模拟结果与实测对比

    图中时间均采用世界时(UTC)

    Fig.  8  Comparison of storm tide between simulated and observed results during Typhoon 0216

    The time in the figure is universal time (UTC)

    图  9  0414号台风期间增水水位数值模拟结果与实测对比图

    图中时间均采用世界时(UTC)

    Fig.  9  Comparison of storm tide between simulated and observed results during Typhoon 0414

    The time in the figure is universal time (UTC)

    表  1  径向气压分布系数$ B $的主要计算表达式

    Tab.  1  Main calculation methods of radial pressure profile coefficient $ B $

    海域$ B $函数表达式数据来源编号
    西北太
    平洋
    ${ {V}_{\mathrm{m}\mathrm{a}\mathrm{x}}={K}_{P}{\left(\mathrm{\Delta }P\right)}^{\beta }} $
    ${B=\dfrac{{\rm{e}}}{ {\gamma }_{2}^{2} }\dfrac{ {\rho }_{{\rm{A}}} }{100\mathrm{\Delta }P}{\left[\dfrac{1}{3.6}{K}_{P}{\left(\mathrm{\Delta }P\right)}^{\beta }\right]}^{2} }$
    文献[15]B1
    ${\begin{array}{l}B=1.128\;58+8.639\;6\times {10}^{-3}\mathrm{\Delta }P\\\quad\;\; -8.774\;5\times {10}^{-3}\phi \end{array}}$文献[17]B2
    南太
    平洋
    ${ B=0.25+0.3\mathrm{l}\mathrm{n}\mathrm{\Delta }P} $文献[12]
    $ {B=1.5+(980-P_{\rm{c}})/120 }$文献[13]
    ${ B=2.0+(P_{\rm{c}}-900)/160 }$文献[14]
    大西洋
    ${ B=1.881-0.005\;57{R}_{\mathrm{m}\mathrm{a}\mathrm{x}}-0.011\phi }$文献[10]B3
    ${\begin{array}{l}B=-0.365-0.152\mathrm{l}\mathrm{n}{R}_{\mathrm{m}\mathrm{a}\mathrm{x} }+ 0.082\mathrm{l}\mathrm{n}\mathrm{\Delta }P\\ \quad\;\;\;-0.117\mathrm{l}\mathrm{n}\phi +0.674\mathrm{l}\mathrm{n}T \end{array}}$文献[26]
    注:T为海面温度;“−”为无编号;Vmax为最大风速;KPβ为回归系数;γ2为常数1.05 s。
    下载: 导出CSV

    表  2  最大风速半径$ {R}_{\mathrm{m}\mathrm{a}\mathrm{x}} $的主要计算表达式

    Tab.  2  Main calculation methods of maximal wind velocity radius $ {R}_{\mathrm{m}\mathrm{a}\mathrm{x}} $

    海域$ {R}_{\mathrm{m}\mathrm{a}\mathrm{x}} $函数表达式数据来源编号
    西北太
    平洋
    ${ {R}_{\mathrm{m}\mathrm{a}\mathrm{x} }=1.119\times {10}^{3}{\mathrm{\Delta }P}^{-0.805} }$文献[8]R1
    ${ {\mathrm{l}\mathrm{n}R}_{\mathrm{m}\mathrm{a}\mathrm{x}}=5.510{\mathrm{\Delta }P}^{-0.117}+6.707\times {10}^{-3}\phi }$文献[27]R2
    ${ {R}_{\mathrm{m}\mathrm{a}\mathrm{x}}=110.22-18.04\mathrm{l}\mathrm{n}\mathrm{\Delta }P }$文献[28]
    大西洋${ {R}_{\mathrm{m}\mathrm{a}\mathrm{x}}=2.097+0.019\mathrm{\Delta }P-1.867\times {10}^{-4}{\mathrm{\Delta }P}^{2}+0.038\phi }$文献[26]
    ${ {R}_{\mathrm{m}\mathrm{a}\mathrm{x}}=3.015+6.291\times {10}^{-5}{\mathrm{\Delta }P}^{2}+0.034\phi }$文献[11]
    ${\begin{array}{l}{R}_{\mathrm{m}\mathrm{a}\mathrm{x} }=28.52\mathrm{t}\mathrm{a}\mathrm{n}{\rm h}\left[0.087\;3\left(\phi -28\right)\right]+0.2{V}_{f}\\\qquad\;\;+ 12.22\mathrm{exp}\left(\dfrac{ {P}_{ {\rm{a} } }-1\;013.2}{33.86}\right)+37.22 \end{array} }$文献[29]R3
    注:“−”为无编号。
    下载: 导出CSV

    表  3  自匹配模式

    Tab.  3  Self-matching patterns

    自匹配模式R1R2R3
    B1B1R1B1R2B1R3
    B2B2R1B2R2B2R3
    B3B3R1B3R2B3R3
    下载: 导出CSV

    表  4  风速计算值与实测值的误差

    Tab.  4  Error between simulated and observed results of wind speed

    台风名称测站误差参数自匹配模式
    B1R1B1R2B1R3B2R1B2R2B2R3B3R1B3R2B3R3
    0216大陈C00.920.910.900.890.900.910.890.910.91
    C1−0.55−5.1411.56−0.93−9.4124.28−4.24−13.7433.00
    石浦C00.840.830.740.890.890.850.890.890.88
    C18.052.2126.08−2.27−11.6030.86−10.70−19.8227.03
    嵊泗C00.850.840.780.830.820.840.850.840.83
    C15.57−0.7727.29−16.12−24.5117.45−28.28−34.850.85
    0414大陈C00.920.910.870.910.910.870.920.910.84
    C13.083.92−0.9229.425.4621.8534.8529.3240.58
    石浦C00.890.900.940.780.830.930.830.860.90
    C13.145.0426.959.463.5154.627.461.1976.38
    嵊泗C00.820.810.780.730.740.730.760.760.74
    C110.087.5146.89−5.00−16.0549.82−16.70−23.0242.50
    下载: 导出CSV
  • [1] 牛海燕, 刘敏, 陆敏, 等. 中国沿海地区近20年台风灾害风险评价[J]. 地理科学, 2011, 31(6): 764−768.

    Niu Haiyan, Liu Min, Lu Min, et al. Risk assessment of typhoon disasters in China coastal area during last 20 years[J]. Scientia Geographica Sinica, 2011, 31(6): 764−768.
    [2] 刘倩, 高路, 赵鹏, 等. 2000−2016年中国热带气旋灾害时空特征研究[J]. 中国防汛抗旱, 2020, 30(5): 50−57.

    Liu Qian, Gao Lu, Zhao Peng, et al. Study on the temporal-spatial characteristics of tropical cyclone disasters in China in 2000−2016[J]. China Flood & Drought Management, 2020, 30(5): 50−57.
    [3] Holland G J. An analytic model of the wind and pressure profiles in hurricanes[J]. Monthly Weather Review, 1980, 108(8): 1212−1218. doi: 10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2
    [4] 杨万康, 尹宝树, 伊小飞, 等. 基于Holland 风场的台风浪数值计算[J]. 水利水运工程学报, 2017(4): 28−34.

    Yang Wankang, Yin Baoshu, Yi Xiaofei, et al. Numerical calculation and research of typhoon waves based on Holland wind field[J]. Hydro-Science and Engineering, 2017(4): 28−34.
    [5] 魏凯, 沈忠辉, 吴联活, 等. 强台风作用下近岸海域波浪−风暴潮耦合数值模拟[J]. 工程力学, 2019, 36(11): 139−146.

    Wei Kai, Shen Zhonghui, Wu Lianhuo, et al. Coupled numerical simulation on wave and storm surge in coastal areas under strong typhoons[J]. Engineering Mechanics, 2019, 36(11): 139−146.
    [6] 潘冬冬, 王俊, 周川. 基于“山竹”台风的波浪数值模拟[J]. 水道港口, 2021, 42(2): 194−199, 219. doi: 10.3969/j.issn.1005-8443.2021.02.006

    Pan Dongdong, Wang Jun, Zhou Chuan. Numerical simulation of wave based on Typhoon Mangkhut[J]. Journal of Waterway and Harbor, 2021, 42(2): 194−199, 219. doi: 10.3969/j.issn.1005-8443.2021.02.006
    [7] 李小莉, 潘增弟, 佘军. 一种调整台风参数的方法[J]. 黄渤海海洋, 1995, 13(2): 11−15.

    Li Xiaoli, Pan Zengdi, She Jun. A method for adjustment of typhoon parameters[J]. Journal of Oceanograpgy of Huanghai & Bohai Seas, 1995, 13(2): 11−15.
    [8] 江志辉, 华锋, 曲平. 一个新的热带气旋参数调整方案[J]. 海洋科学进展, 2008, 26(1): 1−7. doi: 10.3969/j.issn.1671-6647.2008.01.001

    Jiang Zhihui, Hua Feng, Qu Ping. A new scheme for adjusting the tropical cyclone parameters[J]. Advances in Marine Science, 2008, 26(1): 1−7. doi: 10.3969/j.issn.1671-6647.2008.01.001
    [9] 赵林, 葛耀君, 宋丽莉, 等. 广州地区台风极值风特性蒙特卡罗随机模拟[J]. 同济大学学报(自然科学版), 2007, 35(8): 1034−1038. doi: 10.3321/j.issn:0253-374X.2007.08.007

    Zhao Lin, Ge Yaojun, Song Lili, et al. Monte-Carlo simulation analysis of typhoon extreme value wind characteristics in Guangzhou[J]. Journal of Tongji University (Natural Science), 2007, 35(8): 1034−1038. doi: 10.3321/j.issn:0253-374X.2007.08.007
    [10] Powell M, Soukup G, Cocke S, et al. State of Florida hurricane loss projection model: Atmospheric science component[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2005, 93(8): 651−674. doi: 10.1016/j.jweia.2005.05.008
    [11] Vickery P J, Wadhera D. Statistical models of Holland pressure profile parameter and radius to maximum winds of hurricanes from flight-level pressure and H*Wind data[J]. Journal of Applied Meteorology and Climatology, 2008, 47(10): 2497−2517. doi: 10.1175/2008JAMC1837.1
    [12] Love G, Murphy K. The operational analysis of tropical cyclone wind fields in the Australian northern region[J]. Northern Territory Region Research Papers, 1984, 85: 44−51.
    [13] Hubbert G D, Holland G J, Leslie L M, et al. A real-time system for forecasting tropical cyclone storm surges[J]. Weather and Forecasting, 1991, 6(1): 86−97. doi: 10.1175/1520-0434(1991)006<0086:ARTSFF>2.0.CO;2
    [14] Harper B A, Holland G J. An updated parametric model of the tropical cyclone[C]// Proceedings of AMS 23rd Conference on Hurricanes and Tropical Meteorology. Dallas: Insititute of Electrical and Electronics Engineers, 1999: 10−15.
    [15] Jakobsen F, Madsen H. Comparison and further development of parametric tropical cyclone models for storm surge modelling[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92(5): 375−391. doi: 10.1016/j.jweia.2004.01.003
    [16] 李瑞龙. 基于改进的台风关键参数的台风极值风速预测[D]. 哈尔滨: 哈尔滨工业大学, 2007.

    Li Ruilong. Prediction of typhoon extreme wind speeds based on improved typhoon key parameteters[D]. Harbin: Harbin Institute of Technology, 2007.
    [17] Fang Pingzhi, Ye Gengjiao, Yu Hui. A parametric wind field model and its application in simulating historical typhoons in the western North Pacific Ocean[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 199: 104131. doi: 10.1016/j.jweia.2020.104131
    [18] 唐建, 史剑, 李训强, 等. 基于台风风场模型的台风浪数值模拟[J]. 海洋湖沼通报, 2013(2): 24−30.

    Tang Jian, Shi Jian, Li Xunqiang, et al. Numerical simulation of typhoon waves with typhoon wind model[J]. Transactions of Oceanology and Limnology, 2013(2): 24−30.
    [19] 程雨佳, 庞亮, 董胜. 台风条件下南海海域超长重现期波高推算的研究[J]. 中国海洋大学学报, 2019, 49(S2): 125−132.

    Cheng Yujia, Pang Liang, Dong Sheng. The study on the estimation of very long return-period significant wave height during hurricane in the region of China South Sea[J]. Periodical of Ocean University of China, 2019, 49(S2): 125−132.
    [20] 方根深, 赵林, 梁旭东, 等. 基于强台风“黑格比”的台风工程模型场参数在中国南部沿海适用性研究[J]. 建筑结构学报, 2018, 39(2): 106−113.

    Fang Genshen, Zhao Lin, Liang Xudong, et al. Applicability analysis of typhoon field parameters in engineering model for south coastal region of China based on strong typhoon Hagupit 0814[J]. Journal of Building Structures, 2018, 39(2): 106−113.
    [21] 卢安平, 赵林, 郭增伟, 等. 基于Monte Carlo法的极值分布类型及其参数估计方法比较[J]. 哈尔滨工业大学学报, 2013, 45(2): 88−95. doi: 10.11918/j.issn.0367-6234.2013.02.016

    Lu Anping, Zhao Lin, Guo Zengwei, et al. A comparative study of extreme value distribution and parameter estimation based on the Monte Carlo method[J]. Journal of Harbin Institute of Technology, 2013, 45(2): 88−95. doi: 10.11918/j.issn.0367-6234.2013.02.016
    [22] 孙志林, 钟汕虹, 王辰, 等. 舟山渔港风暴潮模拟分析[J]. 海洋学报, 2020, 42(1): 136−143.

    Sun Zhilin, Zhong Shanhong, Wang Chen, et al. Simulation and analysis of storm surge at Zhoushan fishing port[J]. Haiyang Xuebao, 2020, 42(1): 136−143.
    [23] 丁骏, 王晶, 赵鑫. 1323号“菲特”台风过程鳌江站历史最高潮位的数值模拟[J]. 海洋预报, 2014, 31(5): 30−36. doi: 10.11737/j.issn.1003-0239.2014.05.005

    Ding Jun, Wang Jing, Zhao Xin. Simulation of the highest tidal level in history of Typhoon 1323 “Fitow”[J]. Marine Forecasts, 2014, 31(5): 30−36. doi: 10.11737/j.issn.1003-0239.2014.05.005
    [24] 陈洁, 宋城城, 李梦雅, 等. 基于情景的浙江省玉环县台风风暴潮模拟与潜在危险性评估[J]. 华东师范大学学报(自然科学版), 2016(3): 125−135, 155.

    Chen Jie, Song Chengcheng, Li Mengya, et al. Potential hazard assessment of typhoon storm surge based on scenario simulation methodology in Yuhuan County, Zhejiang Province[J]. Journal of East China Normal University (Natural Science), 2016(3): 125−135, 155.
    [25] 何威, 姚炎明, 黄森军, 等. 椒江河口形态变化对风暴潮位的影响——以9711号台风为例[J]. 水力发电学报, 2019, 38(7): 21−35. doi: 10.11660/slfdxb.20190703

    He Wei, Yao Yanming, Huang Senjun, et al. Effects of variations in Jiaojiang estuarine geography on storm tides: Case study of Typhoon 9711[J]. Journal of Hydroelectric Engineering, 2019, 38(7): 21−35. doi: 10.11660/slfdxb.20190703
    [26] Vickery P J, Skerlj P F, Twisdale L A. Simulation of hurricane risk in the U. S. using empirical track model[J]. Journal of Structural Engineering, 2000, 126(10): 1222−1237. doi: 10.1061/(ASCE)0733-9445(2000)126:10(1222)
    [27] Fang Genshen, Zhao Lin, Song Lili, et al. Reconstruction of radial parametric pressure field near ground surface of landing typhoons in Northwest Pacific Ocean[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 183: 223−234. doi: 10.1016/j.jweia.2018.10.020
    [28] 林伟, 方伟华. 西北太平洋台风风场模型中Holland B系数区域特征研究[J]. 热带地理, 2013, 33(2): 124−132.

    Lin Wei, Fang Weihua. Regional characteristics of Holland B parameter in typhoon wind field model for Northwest Pacific[J]. Tropical Geography, 2013, 33(2): 124−132.
    [29] Graham H E. Meteorological Considerations Pertinent to Standard Project Hurricane, Atlantic and Gulf Coasts of the United States[M]. Washington, D. C. : U. S. Department of Commerce, Weather Bureau, 1959.
    [30] Ying Ming, Zhang Wei, Yu Hui, et al. An overview of the China meteorological administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2): 287−301. doi: 10.1175/JTECH-D-12-00119.1
    [31] Lu Xiaoqin, Yu Hui, Ying Ming, et al. Western north pacific tropical cyclone database created by the China meteorological administration[J]. Advances in Atmospheric Sciences, 2021, 38(4): 690−699. doi: 10.1007/s00376-020-0211-7
    [32] 黄山. 琼州海峡风暴潮数值模拟与不同台风路径对增水的影响研究[D]. 广州: 华南理工大学, 2016.

    Huang Shan. Numerical simulation of storm surges in the Qiongzhou Strait and study on the influence of different typhoon tracks on surges[D]. Guangzhou: South China University of Technology, 2016.
    [33] 杨玄阁, 朱良生. 琼州海峡台风风暴潮增水过程的数值分析[J]. 人民珠江, 2017, 38(1): 43−47. doi: 10.3969/j.issn.1001-9235.2017.01.010

    Yang Xuange, Zhu Liangsheng. Numerical simulation and analysis of storm surge in the Qiongzhou Strait[J]. Pearl River, 2017, 38(1): 43−47. doi: 10.3969/j.issn.1001-9235.2017.01.010
    [34] 卢美, 严俊. 浙江沿岸“0216”号台风风暴潮特征及预报经验总结[J]. 海洋预报, 2003, 20(2): 15−23. doi: 10.3969/j.issn.1003-0239.2003.02.003

    Lu Mei, Yan Jun. He characteristics and forecast experience of Typhoon 0216 storm surge in Zhejiang coast[J]. Marine Forecasts, 2003, 20(2): 15−23. doi: 10.3969/j.issn.1003-0239.2003.02.003
    [35] 张西琳, 楚栋栋, 张继才, 等. 东南沿海台风风暴潮增水过程中非线性机制和地形的作用研究: 以1509号台风“灿鸿”为例[J]. 海洋与湖沼, 2020, 51(6): 1320−1331. doi: 10.11693/hyhz20191200279

    Zhang Xilin, Chu Dongdong, Zhang Jicai, et al. Effects of nonlinear terms and topography on storm surges in the southeast seas of China: a case study of Typhoon Chan-hom[J]. Oceanologia et Limnologia Sinica, 2020, 51(6): 1320−1331. doi: 10.11693/hyhz20191200279
    [36] 朱婧, 叶龙彬, 陈德花, 等. 1614号台风“莫兰蒂”在厦门湾及其周边海域引发风暴潮的数值模拟[J]. 海洋预报, 2020, 37(6): 20−30.

    Zhu Jing, Ye Longbin, Chen Dehua, et al. Numerical simulation of storm surge in Xiamen Bay and its adjacent seas caused by Typhoon “Moranti” (1614)[J]. Marine Forecasts, 2020, 37(6): 20−30.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  481
  • HTML全文浏览量:  197
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-20
  • 修回日期:  2022-07-13
  • 网络出版日期:  2022-07-28
  • 刊出日期:  2022-10-01

目录

    /

    返回文章
    返回