留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海底沉积物纵波速度与强度参数关系模型研究

张东昱甫 杨进 王欢欢 李潇 徐飞

张东昱甫,杨进,王欢欢,等. 海底沉积物纵波速度与强度参数关系模型研究[J]. 海洋学报,2022,44(10):90–99 doi: 10.12284/hyxb2022188
引用本文: 张东昱甫,杨进,王欢欢,等. 海底沉积物纵波速度与强度参数关系模型研究[J]. 海洋学报,2022,44(10):90–99 doi: 10.12284/hyxb2022188
Zhang Dongyufu,Yang Jin,Wang Huanhuan, et al. Study on the relationship model between P-wave velocity and strength parameters of marine sediments[J]. Haiyang Xuebao,2022, 44(10):90–99 doi: 10.12284/hyxb2022188
Citation: Zhang Dongyufu,Yang Jin,Wang Huanhuan, et al. Study on the relationship model between P-wave velocity and strength parameters of marine sediments[J]. Haiyang Xuebao,2022, 44(10):90–99 doi: 10.12284/hyxb2022188

海底沉积物纵波速度与强度参数关系模型研究

doi: 10.12284/hyxb2022188
基金项目: 国家自然科学基金(51434009,51774301)。
详细信息
    作者简介:

    张东昱甫(1996-),男,北京市人,博士研究生,主要从事海洋地质与海洋地球物理研究。E-mail: zdyf.1013@163.com

    通讯作者:

    杨进(1966-),男,教授,主要从事石油工程与海洋工程研究。E-mail: cyjin1018@vip.163.com

  • 中图分类号: P736.21

Study on the relationship model between P-wave velocity and strength parameters of marine sediments

  • 摘要: 海底沉积物具有质地松软、强度低的特点,其强度参数与海上平台插桩就位、导管架的安装等工程关系紧密,与海上作业安全息息相关。常规钻孔取芯与静力触探等强度参数获取方法成本较高、取样点少,且对沉积物扰动较大,利用易获取的声学资料预测海底沉积物的强度参数具有重要研究意义。本文基于Wood方程、Biot-Stoll模型、Dvorkin等效介质模型等声波传播理论,计算不同物性参数(密度、孔隙度)梯度下的理论纵波速度,结合室内模拟地层声学实验,对比了模型计算声速与实测声速的变化特征,建立了声速与物性参数关系模型。基于室内模拟地层土力学试验,揭示了沉积物物性与抗剪强度、黏聚力等参数之间的关系,建立了物性与强度参数关系模型。以物性参数为桥梁,建立基于声学特征的海底沉积物强度参数预测模型。此模型既避免了原位取样沉积物失水扰动的问题,又弥补了经验公式局限性的缺点,具有普适性与准确性,有效提高无法取样地区沉积物强度参数的精度,提高了经济效益,对浅层的勘探与开发起到了理论指导的作用。
  • 图  1  声波测量装置

    Fig.  1  Acoustic measuring device

    图  2  声波理论模型结果

    Fig.  2  Results of theoretical model of acoustic wave

    图  3  不同密度土体直接剪切试验

    蓝点为实测数据

    Fig.  3  Direct shear test of soil samples with different density

    The blue dots represent the measured data

    图  4  不同孔隙度土体直接剪切试验

    蓝点为实测数据

    Fig.  4  Direct shear test of soil samples with different porosity

    The blue dots represent the measured data

    图  5  密度、强度参数与纵波速度的关系

    Fig.  5  Relationship between density, strength parameters and P-wave velocity

    图  6  孔隙度与强度参数的关系

    Fig.  6  Relationship between porosity and strength parameters

    表  1  声波传播理论参数

    Tab.  1  Parameters of the theory of acoustic propagation

    序号参数名称Wood
    模型
    Biot-Stoll
    模型
    Dvorkin等效
    介质模型
    1孔隙流体密度ρf/(kg·m−31 0251 0251 025
    2基质颗粒密度ρg/(kg·m−32 6502 6502 650
    3绝对黏度η/(kg·m−30.001
    4密度ρ/(kg·m−3实际实际
    5孔隙度ϕ/%实际实际实际
    6临界孔隙度ϕc/%38
    7基质颗粒体积模量Kr/Pa1.47×10101.47×10101.47×1010
    8基质颗粒剪切模量µr/Pa1.34×1010
    9孔隙流体体积模量Kf/Pa2.18×1092.18×1092.18×109
    10泊松比σ0.150.15
    11曲折度c1.35
    12渗透率κ/m2公式(13)
    13体积衰减系数δb0.1
    14剪切衰减系数δs0.1
    15颗粒平均接触次数n8.5
    注:“实际”代表各参数根据实际配置情况得到;“−”代表没有取值。
    下载: 导出CSV

    表  2  实验土样基本配置情况

    Tab.  2  Basic configuration of experimental soil

    序号密度/(g·cm−3孔隙度/%孔隙比水质量/g砂土质量/g黏土质量/g
    11.5451.51.063 06111 1307 420
    21.5750.51.023 12211 3507 567
    31.6149.20.973 20111 6387 759
    41.6448.50.943 25111 8187 879
    51.6747.40.93 32012 0678 045
    61.7146.20.863 39112 3278 218
    71.7544.80.813 48512 6678 445
    81.843.20.763 58313 0278 685
    91.8442.50.743 62513 1778 785
    101.8840.80.693 73213 5679 045
    下载: 导出CSV

    表  3  纵波速度与物性参数关系

    Tab.  3  Relationship between P-wave velocity and physical parameters

    序号参数函数表达式R2RMSE
    1密度ρρ=0.669Vp2.6990.943 10.029 19
    2孔隙度ϕϕ=1.379Vp−3.1610.959 40.007 65
    注:纵波速度单位为km/s,密度单位为g/cm3
    下载: 导出CSV

    表  4  强度与物性参数关系

    Tab.  4  Relationship between strength and physical parameters

    参数函数表达式R2RMSE
    抗剪强度ττ=−61.22ρ2+259.2ρ−213.50.946 41.562
    τ=−555.3ϕ2+351.3ϕ+6.810.958 01.383
    黏聚力cc=−70.15ρ2+297.1ρ−256.20.924 12.161
    c=−637.2ϕ2+403.7ϕ−3.8450.929 12.089
    内摩擦角φφ=6.899ρ+7.5470.565 10.740
    φ=−21.92ϕ+29.470.550 40.753
    注:抗剪强度、黏聚力单位为kPa,内摩擦角单位为(°)。
    下载: 导出CSV

    表  5  强度参数预测模型

    Tab.  5  Prediction model of strength parameters

    序号参数函数表达式R2RMSE
    1抗剪强度ττ=27.4Vp2.996+1.294Vp1.498−29.890.927 71.961
    2黏聚力cc=33.13Vp3.022+4.858Vp1.511−40.640.928 42.267
    3内摩擦角φφ=−4.594×1010Vp−75.11+200.631 60.729
    注:抗剪强度、黏聚力单位为kPa,内摩擦角单位为(°),纵波速度单位为km/s。
    下载: 导出CSV
  • [1] 耿雪樵, 徐行, 刘方兰, 等. 我国海底取样设备的现状与发展趋势[J]. 地质装备, 2009, 10(4): 11−16. doi: 10.3969/j.issn.1009-282X.2009.04.002

    Geng Xueqiao, Xu Xing, Liu Fanglan, et al. The current status and development trends of marine sampling equipment[J]. Equipment for Geotechnical Engineering, 2009, 10(4): 11−16. doi: 10.3969/j.issn.1009-282X.2009.04.002
    [2] 王淑云, 鲁晓兵. 深水土工调查技术和分析方法新进展[J]. 海洋工程, 2007, 25(2): 126−130. doi: 10.3969/j.issn.1005-9865.2007.02.020

    Wang Shuyun, Lu Xiaobing. Recent advances in techniques and analytic methods of deepwater geotechnical investigation[J]. The Ocean Engineering, 2007, 25(2): 126−130. doi: 10.3969/j.issn.1005-9865.2007.02.020
    [3] 何旭涛, 张秀峰, 舒琪, 等. 海底麻坑内外土体物理力学特性差异研究[J]. 海洋科学, 2020, 44(2): 131−137. doi: 10.11759/hykx20190415001

    He Xutao, Zhang Xiufeng, Shu Qi, et al. Study on the differences in physical and mechanical properties of soil inside and outside a seabed pockmark[J]. Marine Sciences, 2020, 44(2): 131−137. doi: 10.11759/hykx20190415001
    [4] 王景强, 郭常升, 刘保华, 等. 基于Buckingham模型和Biot-Stoll模型的南沙海域沉积物声速分布特征[J]. 地球学报, 2016, 37(3): 359−367. doi: 10.3975/cagsb.2016.03.13

    Wang Jingqiang, Guo Changsheng, Liu Baohua, et al. Sound speed distribution of seafloor sediments in Nansha Islands sea based on Buckingham model and Biot-Stoll model[J]. Acta Geoscientica Sinica, 2016, 37(3): 359−367. doi: 10.3975/cagsb.2016.03.13
    [5] Gassmann F. Elastic waves through a packing of spheres[J]. Geophysics, 1951, 16(4): 673−685. doi: 10.1190/1.1437718
    [6] Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28(2): 179−191. doi: 10.1121/1.1908241
    [7] Biot M A. Generalized theory of acoustic propagation in porous dissipative media[J]. The Journal of the Acoustical Society of America, 1962, 34(9A): 1254−1264. doi: 10.1121/1.1918315
    [8] Biot M A. Generalized boundary condition for multiple scatter in acoustic reflection[J]. The Journal of the Acoustical Society of America, 1968, 44(6): 1616−1622. doi: 10.1121/1.1911304
    [9] Buckingham M J. Theory of acoustic attenuation, dispersion, and pulse propagation in unconsolidated granular materials including marine sediments[J]. The Journal of the Acoustical Society of America, 1997, 102(5): 2579−2596. doi: 10.1121/1.420313
    [10] Buckingham M J. Theory of compressional and shear waves in fluidlike marine sediments[J]. The Journal of the Acoustical Society of America, 1998, 103(1): 288−299. doi: 10.1121/1.421091
    [11] Hamilton E L. Sound velocity and related properties of marine sediments, North Pacific[J]. Journal of Geophysical Research, 1970, 75(23): 4423−4446. doi: 10.1029/JB075i023p04423
    [12] 侯正瑜, 郭常升, 王景强. 南沙海域深水区表层沉积物声速与孔隙度相关关系[J]. 海洋科学, 2013, 37(7): 77−82.

    Hou Zhengyu, Guo Changsheng, Wang Jingqiang. Surface sediments acoustic velocity and porosity correlation in Nansha sea area abyssal region[J]. Marine Sciences, 2013, 37(7): 77−82.
    [13] Zheng Jiewen, Liu Baohua, Kan Guangming, et al. The sound velocity and bulk properties of sediments in the Bohai Sea and the Yellow Sea of China[J]. Acta Oceanologica Sinica, 2016, 35(7): 76−86. doi: 10.1007/s13131-016-0906-x
    [14] Kim D C, Sung J Y, Park S C, et al. Physical and acoustic properties of shelf sediments, the South Sea of Korea[J]. Marine Geology, 2001, 179(1/2): 39−50.
    [15] Duan Wei, Cai Guojun, Liu Songyu, et al. Correlations between shear wave velocity and geotechnical parameters for Jiangsu clays of China[J]. Pure and Applied Geophysics, 2019, 176(2): 669−684. doi: 10.1007/s00024-018-2011-x
    [16] 黄雅虹, 吕悦军, 彭艳菊, 等. 渤海海域黏性土剪切波速与抗剪强度统计关系的初步研究[J]. 中国地震, 2020, 36(3): 527−538. doi: 10.3969/j.issn.1001-4683.2020.03.015

    Huang Yahong, Lü Yuejun, Peng Yanju, et al. A preliminary study on statistical relationship between shear wave velocity and shear strength of clayey soil in Bohai Sea area[J]. Earthquake Research in China, 2020, 36(3): 527−538. doi: 10.3969/j.issn.1001-4683.2020.03.015
    [17] Stoll R D. Acoustic waves in ocean sediments[J]. Geophysics, 1977, 42(4): 715−725. doi: 10.1190/1.1440741
    [18] Dvorkin J, Prasad M, Sakai A, et al. Elasticity of marine sediments: rock physics modeling[J]. Geophysical Research Letters, 1999, 26(12): 1781−1784. doi: 10.1029/1999GL900332
    [19] Helgerud M B, Dvorkin J, Nur A, et al. Elastic-wave velocity in marine sediments with gas hydrates: effective medium modeling[J]. Geophysical Research Letters, 1999, 26(13): 2021−2024. doi: 10.1029/1999GL900421
    [20] Schock S G. A method for estimating the physical and acoustic properties of the sea bed using chirp sonar data[J]. IEEE Journal of Oceanic Engineering, 2004, 29(4): 1200−1217. doi: 10.1109/JOE.2004.841421
    [21] 潘国富. 南海北部海底浅部沉积物声学特性研究[D]. 上海: 同济大学, 2003.

    Pan Guofu. Research on the acoustic characteristics of seabed sediments in the northern South China Sea[D]. Shanghai: Tongji University, 2003.
    [22] Hou Zhengyu, Guo Changsheng, Wang Jingqiang, et al. Seafloor sediment study from South China Sea: acoustic & physical property relationship[J]. Remote Sensing, 2015, 7(9): 11570−11585. doi: 10.3390/rs70911570
    [23] 卢博, 李赶先, 黄韶健, 等. 中国黄海、东海和南海北部海底浅层沉积物声学物理性质之比较[J]. 海洋技术, 2005, 24(2): 28−33. doi: 10.3969/j.issn.1003-2029.2005.02.008

    Lu Bo, Li Ganxian, Huang Shaojian, et al. The comparing of seabed sediment acoustic-physical properties in the Yellow Sea, the East China Sea and northern the South China Sea[J]. Ocean Technology, 2005, 24(2): 28−33. doi: 10.3969/j.issn.1003-2029.2005.02.008
    [24] 卢博, 李赶先, 刘强, 等. 海南岛东南外海海底沉积物特征及其声学物理性质研究[J]. 海洋学报, 2007, 29(4): 34−42.

    Lu Bo, Li Ganxian, Liu Qiang, et al. A study on seafloor sediment and its acouso-physical properties in the southeast offshore sea area of Hainan Island in China[J]. Haiyang Xuebao, 2007, 29(4): 34−42.
    [25] Wang Jingqiang, Guo Changsheng, Hou Zhengyu, et al. Distributions and vertical variation patterns of sound speed of surface sediments in South China Sea[J]. Journal of Asian Earth Sciences, 2014, 89: 46−53. doi: 10.1016/j.jseaes.2014.03.026
    [26] 王星华, 黄长溪, 隆威. 直接快剪条件下黏土抗剪强度影响因素探讨[J]. 铁道科学与工程学报, 2012, 9(5): 46−49. doi: 10.3969/j.issn.1672-7029.2012.05.009

    Wang Xinghua, Huang Changxi, Long Wei. Shear strength factors of clayey soils under the condition of direct fast shear[J]. Journal of Railway Science and Engineering, 2012, 9(5): 46−49. doi: 10.3969/j.issn.1672-7029.2012.05.009
    [27] Liu Baohua, Han Tongcheng, Kan Guangming, et al. Correlations between the in situ acoustic properties and geotechnical parameters of sediments in the Yellow Sea, China[J]. Journal of Asian Earth Sciences, 2013, 77: 83−90. doi: 10.1016/j.jseaes.2013.07.040
    [28] Gardner G H F, Gardner L W, Gregory A R. Formation velocity and density—The diagnostic basics for stratigraphic traps[J]. Geophysics, 1974, 39(6): 770−780. doi: 10.1190/1.1440465
    [29] Castagna J P, Batzle M L, Eastwood R L. Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks[J]. Geophysics, 1985, 50(4): 571−581. doi: 10.1190/1.1441933
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  259
  • HTML全文浏览量:  89
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-24
  • 修回日期:  2022-06-22
  • 网络出版日期:  2022-07-28
  • 刊出日期:  2022-10-01

目录

    /

    返回文章
    返回