留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北部湾海浪季节变化和驱动因素的数值模拟研究

赵红军 王俊达 孔俊 陈国平

赵红军,王俊达,孔俊,等. 北部湾海浪季节变化和驱动因素的数值模拟研究[J]. 海洋学报,2022,44(10):10–19 doi: 10.12284/hyxb2022184
引用本文: 赵红军,王俊达,孔俊,等. 北部湾海浪季节变化和驱动因素的数值模拟研究[J]. 海洋学报,2022,44(10):10–19 doi: 10.12284/hyxb2022184
Zhao Hongjun,Wang Junda,Kong Jun, et al. Numerical investigations on seasonal variations and forcing factors to waves in the Beibu Gulf[J]. Haiyang Xuebao,2022, 44(10):10–19 doi: 10.12284/hyxb2022184
Citation: Zhao Hongjun,Wang Junda,Kong Jun, et al. Numerical investigations on seasonal variations and forcing factors to waves in the Beibu Gulf[J]. Haiyang Xuebao,2022, 44(10):10–19 doi: 10.12284/hyxb2022184

北部湾海浪季节变化和驱动因素的数值模拟研究

doi: 10.12284/hyxb2022184
基金项目: 中央高校基本科研业务费专项(2018B13314);国家自然科学基金(51979095);江苏高校青蓝工程项目(2020)。
详细信息
    作者简介:

    赵红军(1980-),男,天津市蓟县人,博士,副教授,主要从事水波动力学理论及其应用研究。E-mail: loyhg@hhu.edu.cn

  • 中图分类号: P731.22

Numerical investigations on seasonal variations and forcing factors to waves in the Beibu Gulf

  • 摘要: 基于NCEP CFSV2再分析风场驱动SWAN模型,对南海至北部湾为期1年的海浪逐时过程进行了数值模拟,利用Jason-2卫星和近岸浮标整年观测数据检验了模拟效果。在此基础上,评估了模型空间网格尺度对北部湾内波浪模拟的影响,分析了波浪的季节变化特征,辨析了局地风和南海传入浪对海湾波浪的驱动贡献。研究显示:(1)较Jason-2卫星观测值,有效波高模拟值的均方根误差和分散系数分别约为0.4 m和0.2;较北部湾湾顶近岸浮标逐时观测值,有效波高的均方根误差和分散系数分别约为0.2 m和0.4,平均波周期的均方根误差和分散系数分别约为0.6 s和0.2,平均波向的均方根误差约为30°;(2)空间网格分辨率为12'×12'的模型对北部湾20 m以深开敞海域波浪的模拟效果良好,模拟值较2'×2'模型的平均相对偏差在10%以下;(3)北部湾冬季盛行东北向波,夏季盛行偏南向浪,季风转换期盛行东南向浪,全年波浪在季风期强于季风转换期,冬季最强、冬夏转换期最弱;(4)局地风对北部湾波浪的驱动贡献自湾口向湾内增强,季风期强于季风转换期;南海传入浪的驱动贡献自湾口向湾内减弱,季风转换期强于季风期;海湾中部和北部的波浪以局地风为主控因素,海南岛南部和东部水域以传入浪的影响为主,海南岛西南水域受局地风和传入浪的共同控制。
  • 图  1  南海波浪模型(a)和北部湾波浪模型(b)的模拟范围

    a. 红色实线是Jason-2卫星轨道路径,A1−A4、B1−B4、C1−C4是轨道路径交叉点;b. 站点BL是波浪近岸浮标观测点

    Fig.  1  Simulation range of the South China Sea wave model (a) and the Beibu Gulf wave model (b)

    a. The Jason-2 satellite ground tracks are drawn as red solid lines and the track intersections are numbered as points A1−A4, B1−B4 and C1−C4; b. the nearshore wave buoy location is labeled as Point BL

    图  2  有效波高模拟值Hs_mod与Jason-2卫星观测值Hs_Ja2的散点分布

    Fig.  2  Scatter diagrams for the results of significant wave height between model simulations Hs_mod and Jason-2 satellite observations Hs_Ja2

    图  3  近岸浮标BL站点有效波高Hs(a)、平均波周期Tm(b)和平均波向Dir(c)的时间变化过程

    Fig.  3  Time series of significant wave height Hs (a), mean wave period Tm (b) and mean wave direction Dir (c) at the nearshore buoy Point BL

    图  4  南海模型有效波高模拟值较北部湾模型的均方根偏差(RMSB)(a−c)和平均相对偏差(MRAB)(d−f)的分布

    Fig.  4  Distributions of RMSB (a−c) and MRAB (d−f) of significant wave height simulated by the South China Sea model compared with the Beibu Gulf model

    图  5  南海各月平均有效波高Hs和平均波向Dir(a−d)、谱峰周期Tp(e−h)以及风速Vw(i−l)的分布

    Fig.  5  Distributions of month averaged significant wave height Hs and mean wave direction Dir (a−d), spectral peak period Tp (e−h) and wind speed Vw (i−l) in the South China Sea

    图  6  北部湾各月平均有效波高Hs和平均波向Dir(a−d)以及谱峰周期Tp(e−h)的分布

    Fig.  6  Distributions of month averaged significant wave height Hs and mean wave direction Dir (a−d), and spectral peak period Tp (e−h) in the Beibu Gulf

    图  7  不同驱动因素模拟得到的月平均有效波高Hs(a−h)以及有效波高贡献比RLWD(i−l)和RIWV(m−p)

    Fig.  7  Distributions of month averaged significant wave height Hs (a−h) and contribution percentage RLWD (i−1) and RIWV (m−p) to Hs by different driving factors

    表  1  Jason-2卫星轨道交叉点附近的有效波高模拟值较卫星观测值的误差统计

    Tab.  1  Error statistics for the simulated significant wave height against the Jason-2 observations at the satellite ground track intersections

    点位MB/mRMSB/mSI点位MB/mRMSB/mSI 点位MB/mRMSB/mSI
    A1−0.110.300.19 B1−0.090.320.21 C1−0.050.340.35
    A2−0.180.370.20 B2−0.070.260.16 C2−0.090.270.15
    A3−0.260.380.23 B3−0.170.350.18 C30.010.440.21
    A4−0.160.350.24 B4−0.190.380.19 C4−0.070.520.23
    下载: 导出CSV

    表  2  近岸浮标BL站点有效波高Hs、平均波周期Tm和平均波向Dir模拟值较观测值的统计比较

    Tab.  2  Statistics and comparisons for the results of significant wave height Hs, mean wave period Tm and mean wave direction Dir between numerical simulations and in-situ observations at the nearshore buoy Point BL



    平均值 最大值MBRMSBSI
    模拟值观测值模拟值观测值
    夏季
    风期
    Hs/m0.510.54 1.681.77−0.030.200.37
    Tm/s3.343.085.765.210.260.720.22
    Dir/(°)174170422
    夏冬
    转换
    Hs/m0.330.393.033.30−0.060.170.44
    Tm/s2.482.625.726.32−0.140.470.18
    Dir/(°)107117−926
    冬季
    风期
    Hs/m0.280.330.750.85−0.040.120.37
    Tm/s2.292.455.134.92−0.150.460.19
    Dir/(°)97112−1628
    冬夏
    转换
    Hs/m0.420.391.681.620.040.160.43
    Tm/s3.212.796.175.250.420.860.31
    Dir/(°)148146332
    下载: 导出CSV
  • [1] Elko N, Feddersen F, Foster D, et al. The future of nearshore processes research[J]. Shore and Beach, 2015, 83(1): 13−38.
    [2] The WAMDI Group. The WAM model—A third generation ocean wave prediction model[J]. Journal of Physical Oceanography, 1988, 18(12): 1775−1810. doi: 10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2
    [3] Tolman H L. A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents[J]. Journal of Physical Oceanography, 1991, 21(6): 782−797. doi: 10.1175/1520-0485(1991)021<0782:ATGMFW>2.0.CO;2
    [4] Booij N, Ris R C, Holthuijsen L H. A third-generation wave model for coastal regions: 1. Model description and validation[J]. Journal of Geophysical Research: Oceans, 1999, 104(C4): 7649−7666. doi: 10.1029/98JC02622
    [5] Rogers W E, Hwang P A, Wang D W. Investigation of wave growth and decay in the SWAN model: three regional-scale applications[J]. Journal of Physical Oceanography, 2003, 33(2): 366−389. doi: 10.1175/1520-0485(2003)033<0366:IOWGAD>2.0.CO;2
    [6] Saha S, Moorthi S, Pan Hualu, et al. The NCEP climate forecast system reanalysis[J]. Bulletin of the American Meteorological Society, 2010, 91(8): 1015−1058. doi: 10.1175/2010BAMS3001.1
    [7] Saha S, Moorthi S, Wu Xingren, et al. The NCEP climate forecast system version 2[J]. Journal of Climate, 2014, 27(6): 2185−2208. doi: 10.1175/JCLI-D-12-00823.1
    [8] Dee D P, Uppala S M, Simmons A J, et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(656): 553−597. doi: 10.1002/qj.828
    [9] Stopa J E, Cheung K F. Intercomparison of wind and wave data from the ECMWF reanalysis interim and the NCEP climate forecast system reanalysis[J]. Ocean Modelling, 2014, 75: 65−83. doi: 10.1016/j.ocemod.2013.12.006
    [10] 林婧, 宋晓姜, 王彰贵. 中国近海ASCAT和ERA-Interim风场资料的评估[J]. 海洋预报, 2019, 36(1): 10−19.

    Lin Jing, Song Xiaojiang, Wang Zhanggui. Evaluation of ASCAT and ERA-interim wind data over China offshore seas[J]. Marine Forecasts, 2019, 36(1): 10−19.
    [11] Chawla A, Spindler D M, Tolman H L. Validation of a thirty year wave hindcast using the climate forecast system reanalysis winds[J]. Ocean Modelling, 2013, 70: 189−206. doi: 10.1016/j.ocemod.2012.07.005
    [12] Shi Jian, Zheng Jinhai, Zhang Chi, et al. A 39-year high resolution wave hindcast for the Chinese coast: model validation and wave climate analysis[J]. Ocean Engineering, 2019, 183: 224−235. doi: 10.1016/j.oceaneng.2019.04.084
    [13] He Hailun, Xu Yao. Wind-wave hindcast in the Yellow Sea and the Bohai Sea from the year 1988 to 2002[J]. Acta Oceanologica Sinica, 2016, 35(3): 46−53. doi: 10.1007/s13131-015-0786-5
    [14] Liang Bingchen, Liu Xin, Li Huajun, et al. Wave climate hindcasts for the Bohai Sea, Yellow Sea, and East China Sea[J]. Journal of Coastal Research, 2016, 32(1): 172−180.
    [15] He Hailun, Song Jinbao, Bai Yefei, et al. Climate and extrema of ocean waves in the East China Sea[J]. Science China Earth Sciences, 2018, 61(7): 980−994. doi: 10.1007/s11430-017-9156-7
    [16] 林刚. 南中国海风场和海浪场统计分析及其应用[D]. 大连: 大连理工大学, 2018.

    Lin Gang. Statistical analysis and application of wind field and sea wave field in South China Sea[D]. Dalian: Dalian University of Technology, 2018.
    [17] 韩树宗, 董杨杨, 张水平, 等. 南海波浪时空变化特征研究[J]. 海洋湖沼通报, 2020, 42(2): 1−9. doi: 10.13984/j.cnki.cn37-1141.2020.02.001

    Han Shuzong, Dong Yangyang, Zhang Shuiping, et al. Study of the temporal and spatial variations of wave in South China Sea[J]. Transactions of Oceanology and Limnology, 2020, 42(2): 1−9. doi: 10.13984/j.cnki.cn37-1141.2020.02.001
    [18] Zhou Guoqing, Huang Jingjin, Yue Tao, et al. Temporal-spatial distribution of wave energy: a case study of Beibu Gulf, China[J]. Renewable Energy, 2015, 74: 344−356. doi: 10.1016/j.renene.2014.08.014
    [19] Zhu Geli, Lin Wantao, Zhao Sen, et al. Spatial and temporal variation characteristics of ocean waves in the South China Sea during the boreal winter[J]. Acta Oceanologica Sinica, 2015, 34(1): 23−28. doi: 10.1007/s13131-015-0592-0
    [20] Wang Huan, Fu Dongyang, Liu Dazhao, et al. Analysis and prediction of significant wave height in the Beibu Gulf, South China Sea[J]. Journal of Geophysical Research: Oceans, 2021, 126(3): e2020JC017144.
    [21] 陈奇礼, 冯伟忠, 蔡瑜瑄. 北部湾东北部的波浪特性[J]. 海洋通报, 1990, 9(1): 1−6.

    Chen Qili, Feng Weizhong, Cai Yuxuan. Wave characteristics in the northeastern Beibu Gulf[J]. Marine Science Bulletin, 1990, 9(1): 1−6.
    [22] Cavaleri L, Malanotte-Rizzoli P. Wind wave prediction in shallow water: theory and applications[J]. Journal Geophysical Research, 1981, 86(C11): 10961−10973.
    [23] Komen G J, Hasselmann S, Hasselmann K. On the existence of a fully developed wind-sea spectrum[J]. Journal of Physical Oceanography, 1984, 14: 1271−1285.
    [24] Hasselmann S, Hasselmann K, Allender J H, et al. Computations and parameterizations of the nonlinear energy transfer in a gravity wave spectrum. Part II: Parameterizations of the nonlinear transfer for application in wave models[J]. Journal of Physical Oceanography, 1985, 15(11): 1378−1391.
    [25] The SWAN Team. SWAN user manual—SWAN cycle III version 41.31AB[EB/OL]. [2022−03−01]. https://swanmodel.sourceforge.io/online_doc/swanuse/swanuse.html.
    [26] Collins J I. Prediction of shallow water spectra[J]. Journal Geophysical Research, 1972, 77(15): 2693−2707.
    [27] Yang Jingling, Jiang Shaocai, Wu Junshan, et al. Effects of wave-current interaction on the waves, cold-water mass and transport of diluted water in the Beibu Gulf[J]. Acta Oceanologica Sinica, 2020, 39(1): 25−40. doi: 10.1007/s13131-019-1529-9
    [28] 王其松, 邓家泉, 刘诚, 等. 叠加风场在南海台风浪数值后报中的应用研究[J]. 海洋学报, 2017, 39(7): 70−79.

    Wang Qisong, Deng Jiaquan, Liu Cheng, et al. Application of superimposed wind fields to the hindcast modelling of typhoon-induced waves in the South China Sea[J]. Haiyang Xuebao, 2017, 39(7): 70−79.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  314
  • HTML全文浏览量:  101
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-10
  • 修回日期:  2022-06-21
  • 网络出版日期:  2022-07-06
  • 刊出日期:  2022-10-01

目录

    /

    返回文章
    返回