Simulation of spatio-temporal distribution of swordfish habitat in the western Indian Ocean based on maximum entropy model
-
摘要: 剑鱼(Xiphias gladius)是一种高度洄游性鱼类,其迁徙和栖息地利用受海洋环境影响明显,理解其空间分布格局形成的机制对于资源的养护和管理具有重要意义。本研究利用2017−2019年中国印度洋延绳钓渔业观察员数据中剑鱼的渔获物信息作为物种出现数据,结合西印度洋海域的海表温度、海面高度、叶绿素a浓度、混合层深度、海表盐度等环境数据,采用最大熵模型对剑鱼的栖息地适宜性分布进行了模拟。结果表明:(1)模型对印度洋西部剑鱼栖息地适宜性分布的模拟精度非常高,各个季节受试者工作特征曲线的曲线下面积都大于0.9,可用于模拟剑鱼潜在的栖息地适宜性分布;(2)研究区域内剑鱼适宜栖息地分布变化与实际作业位置变动基本一致,干季和湿季剑鱼栖息地高适宜性的区域分布都较为集中,但湿季分布范围要大于干季;(3)海表温度、海表盐度和混合层深度是影响西印度洋剑鱼栖息地适宜性分布的重要环境因子,在干季和湿季的最适范围分别为25.8~31.6℃、34.4~35.9、0.1~24.9 m和25.6~30.5℃、34.8~36.4、13.1~54.1 m。研究结果可为西印度洋海域剑鱼种群的可持续利用和科学管理提供必要参考信息。Abstract: Swordfish (Xiphias gladius) is a highly migratory fish whose habitat suitability is significantly influenced by the marine environment, and the prediction of its habitat using changes in the marine environment is of great scientific importance. In this study, we used the catch information of swordfish in the Chinese Indian Ocean Longline Fisheries Observer Data from 2017 to 2019 as species occurrence data, combined with the environmental data in the western Indian Ocean waters, including sea surface temperature (SST), sea surface height (SSH), chlorophyll a (Chl a) concentration, mixed layer depth (MLD), and sea surface salinity (SSS), the habitat suitability distribution of swordfish in the western Indian Ocean is simulated by using a maximum entropy model (MaxEnt). Model results show that: (1) the model has very high accuracy in simulating the habitat suitability distribution of swordfish in the western Indian Ocean, with AUC values greater than 0.9 in all seasons, and can be used to simulate the potential habitat suitability distribution of swordfish; (2) changes in the distribution of suitable habitat for swordfish in the study area are generally consistent with changes in the actual operational location, and the distribution of areas with high habitat suitability for swordfish is more concentrated in both the dry and rainy seasons, but the distribution range is greater in the wet season than in the dry season; (3) SST, SSS and MLD are important environmental factors affecting the habitat suitability distribution of swordfish in the western Indian Ocean. The optimum ranges of SST, SSS and MLD in the dry and rainy seasons are 25.8−31.6°C, 34.4−35.9 and 0.1−24.9 m, and 25.6−30.5°C, 34.8−36.4 and 13.1−54.1 m, respectively. The results of the study provide essential reference information for the sustainable use and scientific management of swordfish populations in the western Indian Ocean.
-
图 2 2017−2019年西印度洋剑鱼实际出现点与潜在栖息地的分布
a. 2017年干季;b. 2018年干季;c. 2019年干季;d. 2017年湿季; e. 2018年湿季; f. 2019年湿季
Fig. 2 Distribution of actual occurrence points and potential habitat of swordfish in the western Indian Ocean from 2017 to 2019
a. Dry season in 2017; b. dry season in 2018; c. dry season in 2019; d. rainy season in 2017; e. rainy season in 2018; f. rainy season in 2019
图 3 2017−2019年西印度洋剑鱼栖息地适宜性指数分布
a. 2017年干季;b. 2018年干季;c. 2019年干季;d. 2017年湿季; e. 2018年湿季; f. 2019年湿季
Fig. 3 Distribution of swordfish habitat suitability index in the western Indian Ocean from 2017 to 2019
a. Dry season in 2017; b. dry season in 2018; c. dry season in 2019; d. rainy season in 2017; e. rainy season in 2018; f. rainy season in 2019
表 1 模型预测评价及主要验证参数
Tab. 1 Main parameters for model evaluation and test
2017年干季 2017年湿季 2018年干季 2018年湿季 2019年干季 2019年湿季 训练数据(AUC值) 0.965 7 0.9343 0.987 2 0.933 9 0.976 9 0.969 4 测试数据 (AUC值) 0.965 4 0.9247 0.981 8 0.925 3 0.965 6 0.965 2 AUC值标准差 0.005 4 0.0136 0.009 8 0.014 4 0.011 0 0.009 4 ESS值 0.251 2 0.3509 0.349 7 0.323 1 0.285 1 0.154 0 遗漏率/% 9.8 14.2 5.6 15.0 5.6 9.4 表 2 2017−2019年各季最大熵模型中环境因子的贡献率 (%)
Tab. 2 The contribution rate (%) of environmental factors in the seasonal maximum entropy model from 2017 to 2019
环境因子 2017年
干季2017年
湿季2018年
干季2018年
湿季2019年
干季2019年
湿季SST 41.39 25.87 32.34 46.76 54.93 46.85 SSS 17.75 33.67 15.18 31.67 20.73 13.69 SSH 18.77 17.84 6.40 3.55 3.18 3.23 Chl a浓度 1.99 1.71 28.44 9.06 14.78 28.07 MLD 20.10 20.91 17.64 8.96 6.38 8.16 表 3 2017−2019年各季Jackknife检验结果得分
Tab. 3 The seasonal result score of Jackknife test from 2017 to 2019
2017年
干季2017年
湿季2018年
干季2018年
湿季2019年
干季2019年
湿季不包含MLD 2.238 1.471 2.221 1.534 2.433 2.485 不包含Chl a浓度 2.259 1.587 2.852 1.410 2.064 2.394 不包含SSH 2.244 1.478 2.679 1.537 2.379 2.491 不包含SSS 2.115 1.202 2.436 0.970 2.312 2.054 不包含SST 2.160 1.581 2.564 1.205 2.247 2.285 只包含MLD 1.416 0.784 1.462 0.679 0.985 0.959 只包含Chl a浓度 0.690 0.206 1.189 0.407 1.063 0.161 只包含SSH 1.079 0.877 0.367 0.566 0.636 1.015 只包含SSS 1.044 0.805 1.512 0.547 0.998 0.874 只包含SST 1.145 0.420 0.924 0.574 1.128 1.338 -
[1] Ichinokawa M, Brodziak J. Using adaptive area stratification to standardize catch rates with application to North Pacific swordfish (Xiphias gladius)[J]. Fisheries Research, 2010, 106(3): 249−260. doi: 10.1016/j.fishres.2010.08.001 [2] Brinson A A, Alcalá A, Die D J, et al. Contrasting socioeconomic indicators for two fisheries that target Atlantic billfish: southeast Florida recreational charter boats and Venezuelan artisanal gill-netters[J]. Bulletin of Marine Science, 2006, 79(3): 635−645. [3] Myers R A, Worm B. Extinction, survival or recovery of large predatory fishes[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360(1453): 13−20. doi: 10.1098/rstb.2004.1573 [4] Rooker J R, Simms J R, Wells R J D, et al. Distribution and habitat associations of billfish and swordfish larvae across mesoscale features in the Gulf of Mexico[J]. PLoS One, 2012, 7(4): e34180. doi: 10.1371/journal.pone.0034180 [5] Sedberry G, Loefer J. Satellite telemetry tracking of swordfish, Xiphias gladius, off the eastern United States[J]. Marine Biology, 2001, 139(2): 355−360. doi: 10.1007/s002270100593 [6] Kraus R T, Wells R J D, Rooker J R. Horizontal movements of Atlantic blue marlin (Makaira nigricans) in the Gulf of Mexico[J]. Marine Biology, 2011, 158(3): 699−713. doi: 10.1007/s00227-010-1593-3 [7] Skov H, Humphreys E, Garthe S, et al. Application of habitat suitability modelling to tracking data of marine animals as a means of analyzing their feeding habitats[J]. Ecological Modelling, 2008, 212(3/4): 504−512. [8] Chang Y J, Sun Chilu, Chen Yong, et al. Habitat suitability analysis and identification of potential fishing grounds for swordfish, Xiphias gladius, in the South Atlantic Ocean[J]. International Journal of Remote Sensing, 2012, 33(23): 7523−7541. doi: 10.1080/01431161.2012.685980 [9] Romeo T, Consoli P, Punzon A, et al. Swordfish (Xiphias gladius Linnaeus 1758) harpoon fishery: a method of evaluation of swordfish presence in the Strait of Messina (Central Mediterranean Sea)[J]. Journal of Applied Ichthyology, 2010, 26(6): 886−891. doi: 10.1111/j.1439-0426.2010.01522.x [10] Sculley M L, Brodziak J. Quantifying the distribution of swordfish (Xiphias gladius) density in the Hawaii-based longline fishery[J]. Fisheries Research, 2020, 230: 105638. doi: 10.1016/j.fishres.2020.105638 [11] 杨晓龙, 杨超杰, 胡成业, 等. 物种分布模型在海洋潜在生境预测的应用研究进展[J]. 应用生态学报, 2017, 28(6): 2063−2072. doi: 10.13287/j.1001-9332.201706.006Yang Xiaolong, Yang Chaojie, Hu Chengye, et al. Application of species distribution models in the prediction of marine potential habitat: a review[J]. Chinese Journal of Applied Ecology, 2017, 28(6): 2063−2072. doi: 10.13287/j.1001-9332.201706.006 [12] 解鹏飞, 顾炎斌, 隋伟娜, 等. 物种分布模型在海洋物种潜在分布预测中面临的大数据挑战[J]. 海洋信息, 2019, 34(1): 51−61. doi: 10.19661/j.cnki.mi.2019.01.009Xie Pengfei, Gu Yanbin, Sui Weina, et al. Big data challenges for species distribution models in predicting potential distribution of marine species[J]. Marine Information, 2019, 34(1): 51−61. doi: 10.19661/j.cnki.mi.2019.01.009 [13] 邢丁亮, 郝占庆. 最大熵原理及其在生态学研究中的应用[J]. 生物多样性, 2011, 19(3): 295−302. doi: 10.3724/SP.J.1003.2011.08318Xing Dingliang, Hao Zhanqing. The principle of maximum entropy and its applications in ecology[J]. Biodiversity Science, 2011, 19(3): 295−302. doi: 10.3724/SP.J.1003.2011.08318 [14] Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3/4): 231−259. [15] Phillips S J, Dudík M, Schapire R E. A maximum entropy approach to species distribution modeling[C]//Proceedings of the Twenty-First International Conference on Machine Learning. Banff: ACM, 2004: 83. [16] Alabia I D, Saitoh S I, Mugo R, et al. Seasonal potential fishing ground prediction of neon flying squid (Ommastrephes bartramii) in the western and central North Pacific[J]. Fisheries Oceanography, 2015, 24(2): 190−203. doi: 10.1111/fog.12102 [17] Chen Bingyao, Hong Zhe, Hao Xiuqing, et al. Environmental models for predicting habitat of the Indo-Pacific humpback dolphins in Fujian, China[J]. Aquatic Conservation: Marine and Freshwater Ecosystems, 2020, 30(4): 787−793. doi: 10.1002/aqc.3279 [18] Tittensor D P, Baco A R, Brewin P E, et al. Predicting global habitat suitability for stony corals on seamounts[J]. Journal of Biogeography, 2009, 36(6): 1111−1128. doi: 10.1111/j.1365-2699.2008.02062.x [19] Monk J, Ierodiaconou D, Versace V L, et al. Habitat suitability for marine fishes using presence-only modelling and multibeam sonar[J]. Marine Ecology Progress Series, 2010, 420: 157−174. doi: 10.3354/meps08858 [20] Lévy M, Shankar D, André J M, et al. Basin-wide seasonal evolution of the Indian Ocean’s phytoplankton blooms[J]. Journal of Geophysical Research: Oceans, 2007, 112(C12): C12014. doi: 10.1029/2007JC004090 [21] Potier M, Marsac F, Cherel Y, et al. Forage fauna in the diet of three large pelagic fishes (lancetfish, swordfish and yellowfin tuna) in the western equatorial Indian Ocean[J]. Fisheries Research, 2007, 83(1): 60−72. doi: 10.1016/j.fishres.2006.08.020 [22] Jensen T G. Arabian Sea and Bay of Bengal exchange of salt and tracers in an ocean model[J]. Geophysical Research Letters, 2001, 28(20): 3967−3970. doi: 10.1029/2001GL013422 [23] Beal L M, Hormann V, Lumpkin R, et al. The response of the surface circulation of the Arabian Sea to monsoonal forcing[J]. Journal of Physical Oceanography, 2013, 43(9): 2008−2022. doi: 10.1175/JPO-D-13-033.1 [24] 杜岩, 张涟漪, 张玉红. 印度洋热带环流圈热盐输运及其对区域气候模态的影响[J]. 地球科学进展, 2019, 34(3): 243−254. doi: 10.11867/j.issn.1001-8166.2019.03.0243Du Yan, Zhang Lianyi, Zhang Yuhong. Review of the tropical gyre in the Indian Ocean with its impact on heat and salt transport and regional climate modes[J]. Advances in Earth Science, 2019, 34(3): 243−254. doi: 10.11867/j.issn.1001-8166.2019.03.0243 [25] Han Weiqing, McCreary Jr J P. Modeling salinity distributions in the Indian Ocean[J]. Journal of Geophysical Research: Oceans, 2001, 106(C1): 859−877. doi: 10.1029/2000JC000316 [26] Schott F A, Xie Shangping, McCreary Jr J P. Indian Ocean circulation and climate variability[J]. Reviews of Geophysics, 2009, 47(1): RG1002. [27] Liu Canran, White M, Newell G. Selecting thresholds for the prediction of species occurrence with presence-only data[J]. Journal of Biogeography, 2013, 40(4): 778−789. doi: 10.1111/jbi.12058 [28] Elith J, Graham C H, Anderson R P, et al. Novel methods improve prediction of species’ distributions from occurrence data[J]. Ecography, 2006, 29(2): 129−151. doi: 10.1111/j.2006.0906-7590.04596.x [29] Kozak K H, Graham C H, Wiens J J. Integrating GIS-based environmental data into evolutionary biology[J]. Trends in Ecology & Evolution, 2008, 23(3): 141−148. [30] Rödder D, Weinsheimer F, Lötters S. Molecules meet macroecology—combining species distribution models and phylogeographic studies[J]. Zootaxa, 2010, 2426(1): 54−60. doi: 10.11646/zootaxa.2426.1.3 [31] Sax D F, Stachowicz J J, Brown J H, et al. Ecological and evolutionary insights from species invasions[J]. Trends in Ecology & Evolution, 2007, 22(9): 465−471. [32] Busby J R. BIOCLIM—a bioclimate analysis and prediction system[M]//Margules C R, Austin M P. Nature Conservation: Cost Effective Biological Surveys and Data Analysis. Australia: CSIRO, 1991. [33] McCullagh P, Nelder J A. Generalized Linear Models[M]. London: Routledge, 2019. [34] Hastie T J. Generalized Additive Models[M]. London: Routledge, 2017. [35] Ripley B D. Pattern Recognition and Neural Networks[M]. Cambridge: Cambridge University Press, 2007. [36] Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5−32. doi: 10.1023/A:1010933404324 [37] Dambach J, Rödder D. Applications and future challenges in marine species distribution modeling[J]. Aquatic Conservation: Marine and Freshwater Ecosystems, 2011, 21(1): 92−100. doi: 10.1002/aqc.1160 [38] Gu Weidong, Swihart R K. Absent or undetected? Effects of non-detection of species occurrence on wildlife-habitat models[J]. Biological Conservation, 2004, 116(2): 195−203. doi: 10.1016/S0006-3207(03)00190-3 [39] MacLeod C D, Mandleberg L, Schweder C, et al. A comparison of approaches for modelling the occurrence of marine animals[J]. Hydrobiologia, 2008, 612(1): 21−32. doi: 10.1007/s10750-008-9491-0 [40] González-Irusta J M, González-Porto M, Sarralde R, et al. Comparing species distribution models: a case study of four deep sea urchin species[J]. Hydrobiologia, 2015, 745(1): 43−57. doi: 10.1007/s10750-014-2090-3 [41] Reiss H, Cunze S, König K, et al. Species distribution modelling of marine benthos: a North Sea case study[J]. Marine Ecology Progress Series, 2011, 442: 71−86. doi: 10.3354/meps09391 [42] Elepathage T S M, Tang Danling, Oey L. The pelagic habitat of swordfish (Xiphias gladius) in the changing environment of the North Indian Ocean[J]. Sustainability, 2019, 11(24): 7070. doi: 10.3390/su11247070 [43] Abascal F J, Mejuto J, Quintans M, et al. Tracking of the broadbill swordfish, Xiphias gladius, in the central and eastern North Atlantic[J]. Fisheries Research, 2015, 162: 20−28. doi: 10.1016/j.fishres.2014.09.011 [44] Palko B J, Beardsley G L, Richards W J. Synopsis of the biology of the swordfish, Xiphias gladius Linnaeus[R]. Washington: U. S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 1981. [45] Tserpes G, Peristeraki P, Valavanis V D. Distribution of swordfish in the eastern Mediterranean, in relation to environmental factors and the species biology[J]. Hydrobiologia, 2008, 612(1): 241−250. doi: 10.1007/s10750-008-9499-5 [46] Luis A J, Pandey P C. Characteristics of atmospheric divergence and convergence in the Indian Ocean inferred from scatterometer winds[J]. Remote Sensing of Environment, 2005, 97(2): 231−237. doi: 10.1016/j.rse.2005.04.016 [47] Bigelow K A, Boggs C H, He Xi. Environmental effects on swordfish and blue shark catch rates in the US North Pacific longline fishery[J]. Fisheries Oceanography, 1999, 8(3): 178−198. doi: 10.1046/j.1365-2419.1999.00105.x [48] Longhurst A R. Ecological Geography of the Sea[M]. 2nd ed. Burlington: Academic Press, 2007.