留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内孤立波破碎后对斜坡沉积物的动力作用过程及特性实验研究

李逸冰 刘乐军 周庆杰 惠扬

李逸冰,刘乐军,周庆杰,等. 内孤立波破碎后对斜坡沉积物的动力作用过程及特性实验研究[J]. 海洋学报,2022,44(x):1–9 doi: 10.12284/hyxb2022174
引用本文: 李逸冰,刘乐军,周庆杰,等. 内孤立波破碎后对斜坡沉积物的动力作用过程及特性实验研究[J]. 海洋学报,2022,44(x):1–9 doi: 10.12284/hyxb2022174
Li Yibing,Liu Lejun,Zhou Qingjie, et al. Experimental Study on the Dynamic Process and Characteristics of Slope Sediments after Breaking of Internal Solitary Waves[J]. Haiyang Xuebao,2022, 44(x):1–9 doi: 10.12284/hyxb2022174
Citation: Li Yibing,Liu Lejun,Zhou Qingjie, et al. Experimental Study on the Dynamic Process and Characteristics of Slope Sediments after Breaking of Internal Solitary Waves[J]. Haiyang Xuebao,2022, 44(x):1–9 doi: 10.12284/hyxb2022174

内孤立波破碎后对斜坡沉积物的动力作用过程及特性实验研究

doi: 10.12284/hyxb2022174
基金项目: 南海北部白云深水区现代海底峡谷内侵蚀地貌、沉积充填及其对峡谷演化的指示意义(41876061);国家自然科学基金(41506071)。
详细信息
    作者简介:

    李逸冰(1996-),男,山东省潍坊市人,主要从事海洋工程地质与灾害地质方面研究。E-mail: yibing_l@163.com

    通讯作者:

    刘乐军(1972-),男,山东省青岛市人,主要从事海洋工程地质与灾害地质方面研究。E-mail: liulj@fio.org.cn

Experimental Study on the Dynamic Process and Characteristics of Slope Sediments after Breaking of Internal Solitary Waves

  • 摘要: 为完善内孤立波与海底斜坡沉积物相互作用研究,本文着眼于内孤立波破碎后在坡上继续运动的阶段,开展物理模拟实验,分析斜坡响应的土压力和超孔隙水压力的变化状况,揭示内波作用过程。研究发现:斜坡沉积物颗粒在内孤立波破碎引起的涡旋和渗流的共同作用下,会发生再悬浮,斜坡坡度变化不改变沉积物产生动力响应的主导动力作用;内孤立波振幅大小影响涡旋与渗流两者的比例,即在小振幅条件下由涡旋作用主导,在大振幅条件下由渗流作用主导;破碎流体在沿斜坡冲出坡顶位置后形成新的涡流,沉积物在新生涡流作用下的动力响应受斜坡坡度的影响。本文结果对于研究内孤立波再悬浮运移海底沉积物,改造海底地形地貌具有参考价值。
  • 图  1  实验水槽示意图

    Fig.  1  Schematic diagram of test sink

    图  2  DLW3101 孔和 DLW3102 孔位置和粒径级配曲线对比图

    Fig.  2  Schematic diagram of the location of boreholes DLW3101 and DLW3102 and comparison of soil size classification curves

    图  3  斜坡截面示意图

    Fig.  3  Schematic diagram of slope section

    图  4  重力塌陷造波示意图

    Fig.  4  Schematic diagram of gravity collapse wave making

    图  5  模拟试验ADV流速时程曲线

    Fig.  5  ADV current rate time curve

    图  6  不同振幅作用下3°斜坡不同位置超孔隙水压力时程曲线

    Fig.  6  Time-history curve of excess pore water pressure in the different location on 3° slope under different amplitudes wave

    图  7  不同振幅作用下9°斜坡不同位置处超孔隙水压力时程曲线

    Fig.  7  Time-history curve of excess pore water pressure in the different location on 3° slope under different amplitudes wave

    图  8  内孤立波破碎时斜坡沉积物颗粒受力示意图

    Fig.  8  Schematic diagram of the force on the slope sediment particles when the internal solitary wave breaks

    图  9  3°坡顶边缘和坡顶中部的土压时程曲线

    Fig.  9  Soil pressure time curves at the top edge and middle of the 3° slope

    图  10  9°坡坡顶边缘和坡顶中部土压时程曲线

    Fig.  10  Soil pressure time curves at the top edge and middle of the 9° slope

    图  11  9°坡顶部涡流生成

    Fig.  11  Vortex generated in the middle of the 9°slope top

    图  12  3°坡坡顶位置涡流生成

    Fig.  12  Vortex generated in the middle of the 3°slope top

    表  1  实验工况表

    Tab.  1  Test condition table

    实验组次上层流体/
    (kg/m−3)
    下层流体/
    (kg/m−3)
    生产振幅/
    cm
    斜坡
    角度α
    坡体长度L/
    cm
    实验19981 020123622
    实验29981 028153622
    实验39981 020129239
    实验49981 028159239
    下载: 导出CSV
  • [1] Chen Chenyuan, Hsu J R C, Chen H H, et al. Laboratory observations on internal solitary wave evolution on steep and inverse uniform slopes[J]. Ocean Engineering, 2007, 34(1): 157−170. doi: 10.1016/j.oceaneng.2005.11.019
    [2] Helfrich K R. Internal solitary wave breaking and run-up on a uniform slope[J]. Journal of Fluid Mechanics, 1992, 243: 133−154. doi: 10.1017/S0022112092002660
    [3] Wang B J, Bogucki D J, Redekopp L G. Internal solitary waves in a structured thermocline with implications for resuspension and the formation of thin particle-laden layers[J]. Journal of Geophysical Research:Oceans, 2001, 106(C5): 9565−9585. doi: 10.1029/2000JC900101
    [4] Ribbe J, Holloway P E. A model of suspended sediment transport by internal tides[J]. Continental Shelf Research, 2001, 21(4): 395−422. doi: 10.1016/S0278-4343(00)00081-9
    [5] 田壮才, 郭秀军, 乔路正, 等. 南海北部海底沉积物临界起动流速空间分布特征分析[J]. 岩石力学与工程学报, 2016, 35(S2): 4287−4294. doi: 10.13722/j.cnki.jrme.2016.0800

    Tian Zhuangcai, Guo Xiujun, Qiao Luzheng, et al. Analysis of spatial distribution characteristics of seabed sediments critical starting velocity in the northern South China Sea[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 4287−4294. doi: 10.13722/j.cnki.jrme.2016.0800
    [6] Nakayama K, Shintani T, Kokubo K, et al. Residual currents over a uniform slope due to breaking of internal waves in a two-layer system[J]. Journal of Geophysical Research:Oceans, 2012, 117(C10): C10002.
    [7] Smith J M, Larson M, Kraus N C. Longshore current on a barred beach: field measurements and calculation[J]. Journal of Geophysical Research:Oceans, 1993, 98(C12): 22717−22731. doi: 10.1029/93JC02116
    [8] Thorpe S A. The generation of alongslope currents by breaking internal waves[J]. Journal of Physical Oceanography, 1999, 29(1): 29−38. doi: 10.1175/1520-0485(1999)029<0029:TGOACB>2.0.CO;2
    [9] Southard J B, Cacchione D A. Experiments on bottom sediment movement by breaking internal waves[M]//Swift D J P, Duane B B, Pilkey O H. Pilkey Shelf Sediment Transport: Process and Pattern. Stroudsburg, PN: Dowden, Hutchinson and Ross, 1972.
    [10] Jia Yonggang, Tian Zhuangcai, Shi Xuefa, et al. Deep-sea sediment resuspension by internal solitary waves in the northern South China Sea[J]. Scientific Reports, 2019, 9(1): 12137. doi: 10.1038/s41598-019-47886-y
    [11] 乔路正, 郭秀军, 田壮才, 等. 内孤立波浅化破碎过程斜坡沉积物孔压响应特征实验分析[J]. 海洋学报, 2018, 40(1): 68−76.

    Qiao Luzheng, Guo Xiujun, Tian Zhuangcai, et al. Experimental analysis of pore pressure characteristics of slope sediments by shoaling internal solitary waves[J]. Haiyang Xuebao, 2018, 40(1): 68−76.
    [12] 方欣华, 杜涛. 海洋内波基础和中国海内波[M]. 青岛: 中国海洋大学出版社, 2005.

    Fang Xinhua, Du Tao. Fundamentals of Oceanic Internal Waves and Internal Waves in the China Seas[M]. Qingdao: China Ocean University Press, 2005.
    [13] 杜辉, 魏岗, 张原铭, 等. 内孤立波沿缓坡地形传播特性的实验研究[J]. 物理学报, 2013, 62(6): 064704. doi: 10.7498/aps.62.064704

    Du Hui, Wei Gang, Zhang Yuanming, et al. Experimental investigations on the propagation characteristics of internal solitary waves over a gentle slope[J]. Acta Physica Sinica, 2013, 62(6): 064704. doi: 10.7498/aps.62.064704
    [14] 胡瑞庚, 刘红军, 时伟. 驻波作用下粉土海床累积液化机制分析[J]. 岩土工程学报, 2021, 43(7): 1228−1237.

    Hu Ruigeng, Liu Hongjun, Shi Wei. Mechanism of residual liquefaction of silty seabed under standing waves[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1228−1237.
    [15] Diamessis P J, Jacobs G B. Near-Bottom Turbulence and Sediment Resuspension Induced by Nonlinear Internal Waves [R]. Cornell University Ithaca NY, 2015.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  1
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-16
  • 修回日期:  2021-12-27
  • 网络出版日期:  2022-06-20

目录

    /

    返回文章
    返回