留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

珠江磨刀门河口环流结构动力特征分析

卢陈 吴尧 杨裕桂 袁菲

卢陈,吴尧,杨裕桂,等. 珠江磨刀门河口环流结构动力特征分析[J]. 海洋学报,2022,44(12):9–18 doi: 10.12284/hyxb2022165
引用本文: 卢陈,吴尧,杨裕桂,等. 珠江磨刀门河口环流结构动力特征分析[J]. 海洋学报,2022,44(12):9–18 doi: 10.12284/hyxb2022165
Lu Chen,Wu Yao,Yang Yugui, et al. Characterizing the circulation flow structure in the Modaomen Estuary of the Zhujiang River[J]. Haiyang Xuebao,2022, 44(12):9–18 doi: 10.12284/hyxb2022165
Citation: Lu Chen,Wu Yao,Yang Yugui, et al. Characterizing the circulation flow structure in the Modaomen Estuary of the Zhujiang River[J]. Haiyang Xuebao,2022, 44(12):9–18 doi: 10.12284/hyxb2022165

珠江磨刀门河口环流结构动力特征分析

doi: 10.12284/hyxb2022165
基金项目: 国家自然科学基金青年基金(42006157);水文水资源与水利工程科学国家重点实验室“一带一路”水与可持续发展科技基金(2020492111)
详细信息
    作者简介:

    卢陈(1984-),男,湖南省永州市人,从事河口海岸动力学方面研究。E-mail:ganghangluchen@163.com

    通讯作者:

    吴尧,男,工程师,主要研究河口水动力及泥沙运动。E-mail:wyaker@hotmail.com

  • 中图分类号: P343.5;P731.21

Characterizing the circulation flow structure in the Modaomen Estuary of the Zhujiang River

  • 摘要: 河口环流结构关系到物质输运、泥沙沉积和地貌变化等物理过程。根据2019年磨刀门河口原型观测平台洪枯季连续观测分层潮流资料,统计洪枯季、大小潮河口东、西汊的涨落潮流及历时变化特征,利用理论方法解析河口东西汊平面环流和重力环流结构,进一步引入混合参数研究河口纵向环流中的潮汐应变环流。研究发现枯季东、西汊在转潮时刻存在东涨西落的平面环流结构,洪季平面环流特征较不明显;枯季重力环流强度整体略大于洪季,西汊重力环流强于东汊,表层向海环流流速可达0.2~0.25 m/s,而底层向陆环流流速相对较小。洪季大潮期由潮不对称性驱动的潮汐应变环流相对较大,进而增强了纵向环流的强度。河口垂向余流结构同样表现洪枯季、大小潮的变化规律。洪季余流整体较大,西汊在小潮期表层余流流速超过0.6 m/s,而东汊余流则明显呈现表层向海、底层向陆的分布特征,枯季余流整体较小,表明其对物质输运和河口地形塑造作用较弱。
  • 图  1  珠江口和磨刀门河口位置

    Fig.  1  The location of the Zhujiang River and Modaomen Estuary

    图  2  珠江河口原型观测平台站点位置

    Fig.  2  The location of the prototype observation platform in the Zhujiang River Estuary

    图  3  2019年6月(洪季)(a)和10月(枯季)(b)东、西汊流速流向和潮位特征

    Fig.  3  The characteristic of flow velocity, direction and tidal level at east and west branches in June (flood season) (a) and October (dry season) (b) 2019

    图  4  洪枯季涨落潮流速、历时差异

    Fig.  4  The flood and ebb tide flow, duration difference at wet and dry seasons

    图  5  平面环流的时空分布特征

    Fig.  5  Temporal and spatial distribution characteristic of the plane circulation

    图  6  重力环流时空变化特征

    Fig.  6  Temporal and spatial variations characterisitic of gravity circulation

    图  7  垂向河口余流的时空变化特征

    Fig.  7  Temporal and spatial variations characteristic of vertical residual flow

    表  1  测站位置表

    Tab.  1  The field measured sites

    测站纬度经度水深/m
    A822°04′35.98″N113°28′13.01″E6
    A922°03′28.70″N113°34′35.28″E3
    A1022°02′14.99″N113°31′59.00″E4.2
    下载: 导出CSV

    表  2  珠江口原型观测站磨刀门水域测站平均流速和流向

    Tab.  2  The statistical data of average flow velocity and direction at Modaomen based on the prototype observation platform in Zhujiang River Estuary

    测站潮型全年枯季洪季
    流速/
    (m·s−1
    流向/
    (°)
    流速/
    (m·s−1
    流向/
    (°)
    流速/
    (m·s−1
    流向/
    (°)
    A8落潮0.511540.481550.53153
    涨潮0.273340.293340.24337
    A9落潮0.291460.261520.31141
    涨潮0.22930.22940.21292
    A10落潮0.431960.392040.45191
    涨潮0.233500.263340.22367
    平均落潮0.411650.381700.43162
    涨潮0.233260.253210.22332
    下载: 导出CSV
  • [1] 时钟, 熊龙兵, 倪智慧, 等. 潮汐河口环流、湍流、混合与层化的物理学[J]. 海岸工程, 2019, 38(1): 1−31. doi: 10.3969/j.issn.1002-3682.2019.01.001

    Shi Zhong, Xiong Longbing, Ni Zhihui, et al. The physics of circulation, turbulence, mixing and stratification in tidal estuaries[J]. Coastal Engineering, 2019, 38(1): 1−31. doi: 10.3969/j.issn.1002-3682.2019.01.001
    [2] Kearney W S, Fagherazzi S. Salt marsh vegetation promotes efficient tidal channel networks[J]. Nature Communications, 2016, 7: 12287. doi: 10.1038/ncomms12287
    [3] Wu Yao, Zhang Wei, Zhu Yuliang, et al. Intra-tidal division of flow and suspended sediment at the first order junction of the Pearl River network[J]. Estuarine, Coastal and Shelf Science, 2018, 209: 169−182. doi: 10.1016/j.ecss.2018.05.030
    [4] 杨名名, 吴加学, 张乾江, 等. 珠江黄茅海河口洪季侧向余环流与泥沙输移[J]. 海洋学报, 2016, 38(1): 31−45.

    Yang Mingming, Wu Jiaxue, Zhang Qianjiang, et al. Lateral residual circulation and sediment transport during the flood season in the Huangmaohai Estuary, Pearl River[J]. Haiyang Xuebao, 2016, 38(1): 31−45.
    [5] 高抒. 潮汐汊道形态动力过程研究综述[J]. 地球科学进展, 2008, 23(12): 1237−1248. doi: 10.3321/j.issn:1001-8166.2008.12.002

    Gao Shu. Morphodynamic processes of tidal inlets: a review[J]. Advances in Earth Science, 2008, 23(12): 1237−1248. doi: 10.3321/j.issn:1001-8166.2008.12.002
    [6] He Yong, Wu Yao, Lu Chen, et al. Morphological change of the mouth bar in relation to natural and anthropogenic interferences[J]. Continental Shelf Research, 2019, 175: 42−52. doi: 10.1016/j.csr.2019.01.015
    [7] 易侃, 龚文平. 伶仃洋河口横向环流[J]. 海洋学报, 2015, 37(3): 1−14.

    Yi Kan, Gong Wenping. Lateral circulation in the Lingding Estuary[J]. Haiyang Xuebao, 2015, 37(3): 1−14.
    [8] Fraccascia S, Winter C, Ernstsen V B, et al. Residual currents and bedform migration in a natural tidal inlet (Knudedyb, Danish Wadden Sea)[J]. Geomorphology, 2016, 271: 74−83. doi: 10.1016/j.geomorph.2016.07.017
    [9] Geyer W R, MacCready P. The estuarine circulation[J]. Annual Review of Fluid Mechanics, 2014, 46: 175−197. doi: 10.1146/annurev-fluid-010313-141302
    [10] Valle-Levinson A, Lwiza K M M. The effects of channels and shoals on exchange between the Chesapeake Bay and the adjacent ocean[J]. Journal of Geophysical Research: Oceans, 1995, 100(C9): 18551−18563. doi: 10.1029/95JC01936
    [11] Kasai A, Hill A E, Fujiwara T, et al. Effect of the Earth’s rotation on the circulation in regions of freshwater influence[J]. Journal of Geophysical Research: Oceans, 2000, 105(C7): 16961−16969. doi: 10.1029/2000JC900058
    [12] Wong K C. On the nature of transverse variability in a coastal plain estuary[J]. Journal of Geophysical Research: Oceans, 1994, 99(C7): 14209−14222. doi: 10.1029/94JC00861
    [13] 朱磊. 河势变化下河口环流结构及变异研究[D]. 上海: 华东师范大学, 2018.

    Zhu Lei. Alteration of estuarine circulation under the influence of morphological evolution[D]. Shanghai: East China Normal University, 2018.
    [14] 蔡华阳, 杨昊, 郭晓娟, 等. 珠江磨刀门河口径潮动力耦合条件下余水位的多时空尺度分析[J]. 海洋学报, 2018, 40(7): 55−65.

    Cai Huayang, Yang Hao, Guo Xiaojuan, et al. Investigation of temporal-spatial distribution patterns of residual water level under the influence of tide-river interaction in the Modaomen Estuary, Zhujiang River[J]. Haiyang Xuebao, 2018, 40(7): 55−65.
    [15] 杨士瑛, 鲍献文, 陈长胜, 等. 夏季粤西沿岸流特征及其产生机制[J]. 海洋学报, 2003, 25(6): 1−8.

    Yang Shiying, Bao Xianwen, Chen Changsheng, et al. Analysis on characteristics and mechanism of current system in west coast of Guangdong Province in the summer[J]. Haiyang Xuebao, 2003, 25(6): 1−8.
    [16] Officer C B. Physical Oceanography of Estuaries (and Associated Coastal Waters)[M]. New York: John Wiley and Sons, Inc. , 1976.
    [17] Schwing F B, Kjerfve B, Sneed J E. Nearshore coastal currents on the South Carolina continental shelf[J]. Journal of Geophysical Research: Oceans, 1983, 88(C8): 4719−4729. doi: 10.1029/JC088iC08p04719
    [18] Buschman F A, Hoitink A J F, van der Vegt M, et al. Subtidal flow division at a shallow tidal junction[J]. Water Resources Research, 2010, 46(12): W12515.
    [19] Holleman R C, Geyer W R, Ralston D K. Stratified turbulence and mixing efficiency in a salt wedge estuary[J]. Journal of Physical Oceanography, 2016, 46(6): 1769−1783. doi: 10.1175/JPO-D-15-0193.1
    [20] 张丽芬, 杨作升, 张凡, 等. 长江河口南槽纵向余环流: 径流、潮汐和地形耦合机制[J]. 中国科学: 地球科学, 2021, 64(12): 2129−2143. doi: 10.1007/s11430-021-9813-7

    Zhang Lifen, Yang Zuosheng, Zhang Fan, et al. Longitudinal residual circulation in the south passage of Yangtze Estuary: combined influences from runoff, tide and bathymetry[J]. Science China Earth Sciences, 2021, 64(12): 2129−2143. doi: 10.1007/s11430-021-9813-7
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  314
  • HTML全文浏览量:  63
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-16
  • 修回日期:  2022-07-09
  • 网络出版日期:  2022-09-20
  • 刊出日期:  2023-01-17

目录

    /

    返回文章
    返回