留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

荣成马山里海域海草床分布现状及其生态特征

邓筱凡 张宏瑜 吴忠迅 李文涛 张沛东

邓筱凡,张宏瑜,吴忠迅,等. 荣成马山里海域海草床分布现状及其生态特征[J]. 海洋学报,2022,44(8):97–109 doi: 10.12284/hyxb2022160
引用本文: 邓筱凡,张宏瑜,吴忠迅,等. 荣成马山里海域海草床分布现状及其生态特征[J]. 海洋学报,2022,44(8):97–109 doi: 10.12284/hyxb2022160
Deng Xiaofan,Zhang Hongyu,Wu Zhongxun, et al. Distribution and ecological characteristics of seagrass bed of Mashanli sea area in Rongcheng[J]. Haiyang Xuebao,2022, 44(8):97–109 doi: 10.12284/hyxb2022160
Citation: Deng Xiaofan,Zhang Hongyu,Wu Zhongxun, et al. Distribution and ecological characteristics of seagrass bed of Mashanli sea area in Rongcheng[J]. Haiyang Xuebao,2022, 44(8):97–109 doi: 10.12284/hyxb2022160

荣成马山里海域海草床分布现状及其生态特征

doi: 10.12284/hyxb2022160
基金项目: 国家重点研发计划(2019YFD0901302);国家自然科学基金(42076100)。
详细信息
    作者简介:

    邓筱凡(1997-),女,山东省威海市人,主要从事海草床修复与保护研究。E-mail:17806265822@163.com

    通讯作者:

    张沛东,男,教授,主要从事海草床修复与保护研究。E-mail:zhangpdsg@ouc.edu.cn

  • 中图分类号: Q948.8

Distribution and ecological characteristics of seagrass bed of Mashanli sea area in Rongcheng

  • 摘要: 海草床是滨海三大典型生态系统之一,具有极其重要的环境改善、资源养护和减灾防灾等生态功能,亦是全球重要的碳库。2016年8月,通过对荣成马山里海域的现场调查,发现了面积为58.26 hm2的海草床,其海草的种类为红纤维虾形草(Phyllospadix iwatensis)和丛生鳗草(Zostera caespitosa)。红纤维虾形草分布面积为54.50 hm2,占该海域海草床总面积的93.5%,分为北部和南部2个带状区域,平均茎枝密度为(368.0±18.2)shoots/m2,平均生物量(干重,下同)为(297.0±41.5)g/m2。丛生鳗草分布面积为3.76 hm2,占海草床总面积的6.5%,呈现斑块状分布,与红纤维虾形草交错而生,平均茎枝密度为(691.2±17.1)shoots/m2,平均生物量为(534.0±70.7)g/m2。马山里海域海草床主要分布在平均水深为(2.8±0.3) m的以岩礁为主的底质上。海草的生长状况存在显著的空间差异,与水温呈现显著的正相关,与水深和陆源污染物存在显著的负相关。结合历史资料,发现该海域海草床退化现象较严重,其主要威胁因素是人为干扰,主要包括渔业生产、养殖活动和陆源污染输入。建议合理规划周边海域的养殖规模和密度、加强陆源污染物管控和开展海草床生态修复工程,以期为温带海草床的有效保护和科学管理提供参考。
  • 图  1  马山里海域海草床调查区域

    Fig.  1  Investigation area of seagrass beds in the Mashanli sea area

    图  2  红纤维虾形草水下状态(a)、外部形态特征(b)及其叶片组织切片(c)

    Fig.  2  Underwater state (a), external morphological characteristics (b) and leaf transection (c) of Phyllospadix iwatensis

    图  3  丛生鳗草水下状态(a)、外部形态特征(b)及其叶片组织切片(c)

    Fig.  3  Underwater state (a), external morphological characteristics (b) and leaf transection (c) of Zostera caespitosa

    图  4  马山里海域海草分布

    Fig.  4  Distribution of seagrasses in the Mashanli sea area

    图  5  海草形态学特征指标谱系

    PW1−PW5为红纤维虾形草站位;ZC1−ZC5为丛生鳗草站位

    Fig.  5  Morphologic indexes intergroup pedigree of seagrasses

    PW1−PW5 indicate the stations of Phyllospadix iwatensis; ZC1−ZC5 indicate the stations of Zostera caespitosa

    图  6  马山里海域海草调查站位及生长状况评估结果

    PW1−PW5为红纤维虾形草站位;ZC1−ZC5为丛生鳗草站位

    Fig.  6  Seagrass survey stations and evaluation results of growth status in the Mashanli sea area

    PW1−PW5 indicate the stations of Phyllospadix iwatensis; ZC1−ZC5 indicate the stations of Zostera caespitosa

    图  7  海草形态学指标与环境因子间的相关性分析

    SH. 株高;LSL. 叶鞘长;AB. 单株地上生物量;UB. 单株地下生物量;WD. 水深;WT. 水温;DO. 溶解氧含量;SWT. 透明度;OM. 有机质含量;A. 海草形态学指标之间的相关性;B. 环境因子指标之间的相关性;C. 海草形态学指标与环境因子指标之间的相关性;*代表p<0.05, **代表p<0.01

    Fig.  7  Correlation analysis among morphological indexes of seagrass and environmental factors

    SH. Shoot height; LSL. leaf sheath length; AB. aboveground bio mass per plant; UB. underground bio mass per plant; WD. water depth; WT. water temperature; DO. dissolved oxygen content; SWT. transparency; OM. organic matter content; the data on the left and right sides are the normalized canonical correlation coefficient of the variables; A. correlation between morphological indexes of seagrasses; B. correlation between environmental factors; C. correlation between morphological indexes of seagrasses and environmental factors; * indicates p<0.05, ** indicates p<0.01

    图  8  U1V1典型结构示意图

    U1. 生态学指标第一典型变量;V1. 海区环境指标第一典型变量;SH. 株高;LSL. 叶鞘长;SD. 茎枝密度;BI. 单株干重;WD. 水深;WT. 水温;SWT. 透明度;OM. 有机质含量

    Fig.  8  Canonical correlation structure diagram of U1 and V1

    U1. The first canonical variable of morphological indexes; V1. the first canonical variable of marine environmental factors; SH. shoot height; LSL. leaf sheath length; SD. shoot density; BI. dry weight per plant; WD. water depth; WT. water temperature; SWT. transparency; OM. organic matter content

    图  9  变量典型载荷分析(a)和变量交叉载荷分析(b)

    SH. 株高;LSL. 叶鞘长;SD. 茎枝密度;BI. 单株干重;WD. 水深;WT. 水温;SWT. 透明度;OM. 有机质含量

    Fig.  9  Variable typical load analysis (a) and variable cross load analysis (b)

    SH. Shoot height; LSL. leaf sheath length; SD. shoot density; BI. dry weight per plant; WD. water depth; WT. water temperature; SWT. transparency; OM. organic matter content

    图  10  典型冗余分析组内、组间解释度

    Fig.  10  Interpretation of typical redundancy analysis within and between groups

    图  11  环境类型赋分结果示意图

    Fig.  11  Schematic diagram of environment type assignment results

    表  1  马山里海域海草形态学指标统计

    Tab.  1  Statistics of morphological indexes of seagrasses in the Mashanli sea area

    海草种类站位株高/cm叶鞘长/cm叶鞘宽/cm叶宽/cm最大根长/cm
    红纤维虾形草PW181.8±3.27.5±1.50.29±0.020.23±0.010.36±0.06
    PW290.0±4.114.7±2.30.31±0.030.27±0.021.08±0.09
    PW390.8±2.316.0±2.50.30±0.020.28±0.021.75±0.06
    PW496.0±3.313.3±1.90.23±0.040.23±0.010.98±0.05
    PW587.6±3.812.5±1.80.29±0.030.25±0.021.13±0.07
    平均值89.2±4.212.8±2.70.28±0.030.25±0.021.06±0.10
    丛生鳗草ZC168.3±4.513.3±0.560.37±0.030.33±0.026.10±0.62
    ZC280.8±5.215.2±0.330.45±0.020.39±0.037.74±0.58
    ZC387.1±7.216.1±0.840.44±0.020.41±0.038.10±0.71
    ZC488.7±6.416.1±0.750.44±0.030.39±0.028.60±0.67
    ZC567.3±7.314.7±0.640.43±0.010.38±0.036.15±0.84
    平均值78.4±8.315.1±0.940.42±0.020.38±0.037.34±0.94
    注:站位位置见图6
    下载: 导出CSV

    表  2  马山里海域海草床主要环境因子

    Tab.  2  The main environmental factors of the seagrass beds in the Mashanli sea area

    海草种类站位水深/m水温/℃盐度 溶解氧含量/(mg·L−1)pH透明度/m底质类型沉积物有机质含量/%
    红纤维虾形草PW12.923.531.68.57.31.6礁石1.13
    PW22.523.531.38.77.51.6礁石1.19
    PW32.923.431.58.57.71.8礁石1.17
    PW42.323.531.38.47.31.9礁石1.11
    PW52.523.631.68.77.51.4礁石1.18
    平均值2.6±0.223.5±0.131.5±0.18.6±0.17.5±0.11.6±0.2礁石1.16±0.03
    丛生鳗草ZC12.923.331.910.37.31.9cS1.09
    ZC23.022.931.910.77.41.7cS1.05
    ZC32.923.031.910.07.41.8cS1.06
    ZC43.223.031.911.27.21.6cS1.15
    ZC53.123.131.910.77.31.6cS1.11
    平均值3.0±0.123.1±0.131.9±010.6±0.47.3±0.11.7±0.2cS1.09±0.04
    注:cS为黏土质砂;站位位置见图6
    下载: 导出CSV

    表  3  环境类型及赋分标准

    Tab.  3  Environment type and assignment standard

    类型自然保护区耕地居民区工厂(养殖场)
    赋分0123
    下载: 导出CSV

    表  4  荣成近岸红纤维虾形草资源量

    Tab.  4  Resources of Phyllospadix iwatensis in the Rongcheng coastal

    地点分布面积/
    hm2
    平均茎枝密度/
    (shoots·m−2)
    生物量/
    (g·m−2)
    参考文献
    马山里54.5368.0±18.2297.0±41.5本文
    镆铘岛95.63 087.0±35.42 320.0±26.6文献[8]
    桑沟湾37.32 649.0±29.82 381.3±27.3文献[11]
    双岛湾7.73889.1±17.1605.9±18.1文献[10]
    下载: 导出CSV
  • [1] McKenzie L J, Yoshida R L, Aini J W, et al. Seagrass ecosystem contributions to people’s quality of life in the Pacific Island countries and territories[J]. Marine Pollution Bulletin, 2021, 167: 112307. doi: 10.1016/j.marpolbul.2021.112307
    [2] 庄武艺, J·谢佩尔. 海草对潮滩沉积作用的影响[J]. 海洋学报, 1991, 13(2): 230−239.

    Zhuang Wuyi, Champey J. Effects of seagrass on tidal flat sedimentation[J]. Haiyang Xuebao, 1991, 13(2): 230−239.
    [3] 邱广龙, 林幸助, 李宗善, 等. 海草生态系统的固碳机理及贡献[J]. 应用生态学报, 2014, 25(6): 1825−1832.

    Qiu Guanglong, Lin Xingzhu, Li Zongshan, et al. Seagrass ecosystems: contributions to and mechanisms of carbon sequestration[J]. Chinese Journal of Applied Ecology, 2014, 25(6): 1825−1832.
    [4] Waycott M, Duarte C M, Carruthers T J B, et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(30): 12377−12381. doi: 10.1073/pnas.0905620106
    [5] Short F T, Polidoro B, Livingstone S R, et al. Extinction risk assessment of the world’s seagrass species[J]. Biological Conservation, 2011, 144(7): 1961−1971. doi: 10.1016/j.biocon.2011.04.010
    [6] 郑凤英, 邱广龙, 范航清, 等. 中国海草的多样性、分布及保护[J]. 生物多样性, 2013, 21(5): 517−526.

    Zheng Fengying, Qiu Guanglong, Fan Hangqing, et al. Diversity, distribution and conservation of Chinese seagrass species[J]. Biodiversity Science, 2013, 21(5): 517−526.
    [7] 叶春江, 赵可夫. 高等植物大叶藻研究进展及其对海洋沉水生活的适应[J]. 植物学通报, 2002, 19(2): 184−193.

    Ye Chunjiang, Zhao Kefu. Advances in the study on the marine higher plant eelgrass (Zostera marina L. ) and its adaptation to submerged life in seawater[J]. Chinese Bulletin of Botany, 2002, 19(2): 184−193.
    [8] 李洪辰, 张沛东, 李文涛, 等. 黄海镆铘岛海域海草床数量分布及其生态特征[J]. 海洋科学, 2019, 43(4): 46−51. doi: 10.11759/hykx20180803001

    Li Hongchen, Zhang Peidong, Li Wentao, et al. Quantitative distribution and ecological characteristics of seagrass beds in the coastal area of Moye Island, Yellow Sea[J]. Marine Sciences, 2019, 43(4): 46−51. doi: 10.11759/hykx20180803001
    [9] 郭栋, 张沛东, 张秀梅, 等. 山东近岸海域海草种类的初步调查研究[J]. 海洋湖沼通报, 2010(2): 17−21. doi: 10.3969/j.issn.1003-6482.2010.02.004

    Guo Dong, Zhang Peidong, Zhang Xiumei, et al. Preliminary investigation and study on seagrass species of inshore areas in Shandong Province[J]. Transactions of Oceanology and Limnology, 2010(2): 17−21. doi: 10.3969/j.issn.1003-6482.2010.02.004
    [10] 李政, 李文涛, 杨晓龙, 等. 威海双岛湾海域海草分布及其生态特征[J]. 渔业科学进展, 2021, 42(2): 176−183.

    Li Zheng, Li Wentao, Yang Xiaolong, et al. Distribution and ecological characteristics of seagrass in Shuangdao Bay, Weihai[J]. Progress in Fishery Sciences, 2021, 42(2): 176−183.
    [11] 李政, 李文涛, 杨晓龙, 等. 威海荣成桑沟湾海域海草床分布现状及其生态特征[J]. 海洋科学, 2020, 44(10): 52−59.

    Li Zheng, Li Wentao, Yang Xiaolong, et al. Distribution and ecological characteristics of seagrass beds in Rongcheng Sanggou Bay, Weihai[J]. Marine Sciences, 2020, 44(10): 52−59.
    [12] 吴沅珈, 张宏科. 广西合浦海草床变化情况及保护对策[J]. 中国科技信息, 2018(22): 68−69. doi: 10.3969/j.issn.1001-8972.2018.22.025

    Wu Yuanjia, Zhang Hongke. Changes of seagrass beds and conservation strategies in Hepu, Guangxi Province[J]. China Science and Technology Information, 2018(22): 68−69. doi: 10.3969/j.issn.1001-8972.2018.22.025
    [13] 吴钟解, 陈石泉, 蔡泽富, 等. 海南岛海草床分布变化及恢复建议[J]. 海洋环境科学, 2021, 40(4): 542−549. doi: 10.12111/j.mes.20200130

    Wu Zhongjie, Chen Shiquan, Cai Zefu, et al. Analysis of distribution change and restoration suggestion of the seagrass beds in Hainan Island[J]. Marine Environmental Science, 2021, 40(4): 542−549. doi: 10.12111/j.mes.20200130
    [14] 岳世栋, 徐少春, 张玉, 等. 中国温带海域新发现较大面积(大于50 ha)海草床: Ⅳ烟台沿海海草分布现状及生态特征[J]. 海洋科学, 2021, 45(10): 61−70.

    Yue Shidong, Xu Shaochun, Zhang Yu, et al. New discovery of larger seagrass beds with area >50 ha in the temperate waters of China: Ⅳ distribution status and ecological characteristics of seagrass in the coastal waters of Yantai[J]. Marine Sciences, 2021, 45(10): 61−70.
    [15] 周毅, 张晓梅, 徐少春, 等. 中国温带海域新发现较大面积(大于50 ha)的海草床: Ⅰ黄河河口区罕见大面积日本鳗草海草床[J]. 海洋科学, 2016, 40(9): 95−97. doi: 10.11759/hykx20151218001

    Zhou Yi, Zhang Xiaomei, Xu Shaochun, et al. New discovery of larger seagrass beds with areas >50 ha in temperate waters of China: an unusual large seagrass (Zostera japonica) bed in the Yellow River Estuary[J]. Marine Sciences, 2016, 40(9): 95−97. doi: 10.11759/hykx20151218001
    [16] 周毅, 许帅, 徐少春, 等. 中国温带海域新发现较大面积(大于0.5 km2)海草床: Ⅱ声呐探测技术在渤海唐山沿海海域发现中国面积最大的鳗草海草床[J]. 海洋科学, 2019, 43(8): 50−55. doi: 10.11759/hykx20190318003

    Zhou Yi, Xu Shuai, Xu Shaochun, et al. New discovery of larger seagrass beds with areas >0.50 km2 in temperate waters of China: Ⅱ the largest Zostera marina bed in China discovered in the coastal waters of Tangshan in the Bohai Sea by sonar detection technology[J]. Marine Sciences, 2019, 43(8): 50−55. doi: 10.11759/hykx20190318003
    [17] 刘慧, 黄小平, 王元磊, 等. 渤海曹妃甸新发现的海草床及其生态特征[J]. 生态学杂志, 2016, 35(7): 1677−1683.

    Liu Hui, Huang Xiaoping, Wang Yuanlei, et al. Newly discovered seagrass bed and its ecological characteristics in the coastal area of Caofeidian, Bohai Sea[J]. Chinese Journal of Ecology, 2016, 35(7): 1677−1683.
    [18] 杨贵福. 獐子岛近海海草的群落特征和大叶藻营养动态分析[D]. 大连: 大连海洋大学, 2014.

    Yang Guifu. Community ecological characteristics of seagrass and trophical dynamical analysis of Zostera marina L. in littoral of Zhangzi Island[D]. Dalian: Dalian Ocean University, 2014.
    [19] Xu Shaochun, Qiao Yongliang, Xu Shuai, et al. Diversity, distribution and conservation of seagrass in coastal waters of the Liaodong Peninsula, North Yellow Sea, northern China: implications for seagrass conservation[J]. Marine Pollution Bulletin, 2021, 167: 112261. doi: 10.1016/j.marpolbul.2021.112261
    [20] 周毅, 徐少春, 许帅, 等. 中国温带海域新发现较大面积(大于50 ha)海草床: Ⅲ渤海兴城−觉华岛海域大面积海草床鳗草种群动力学及补充机制[J]. 海洋与湖沼, 2020, 51(4): 943−951. doi: 10.11693/hyhz20200100032

    Zhou Yi, Xu Shaochun, Xu Shuai, et al. New discovery of larger seagrass beds with areas >50 ha in temperate waters of China: Ⅲ population dynamics and recruitment mechanism of Zostera marina in the Xingcheng-Juehuadao coastal waters of Bohai Sea[J]. Oceanologia et Limnologia Sinica, 2020, 51(4): 943−951. doi: 10.11693/hyhz20200100032
    [21] 宁秋云, 何斌源, 赖廷和. 广西竹山海草生态修复工程效果评估[J]. 化学工程与装备, 2020(12): 304−306.

    Ning Qiuyun, He Binyuan, Lai Tinghe. Effect evaluation of ecological restoration of seagrass in Zhushan, Guangxi Province[J]. Chemical Engineering & Equipment, 2020(12): 304−306.
    [22] 范航清, 彭胜, 石雅君, 等. 广西北部湾沿海海草资源与研究状况[J]. 广西科学, 2007, 14(3): 289−295. doi: 10.3969/j.issn.1005-9164.2007.03.026

    Fan Hangqing, Peng Sheng, Shi Yajun, et al. The situations of seagrass resources and researches along Guangxi coasts of Beibu Gulf[J]. Guangxi Sciences, 2007, 14(3): 289−295. doi: 10.3969/j.issn.1005-9164.2007.03.026
    [23] 黄小平, 江志坚, 张景平, 等. 广东沿海新发现的海草床[J]. 热带海洋学报, 2010, 29(1): 132−135. doi: 10.3969/j.issn.1009-5470.2010.01.020

    Huang Xiaoping, Jiang Zhijian, Zhang Jingping, et al. Newly discovered seagrass beds in the coastal seas of Guangdong Province[J]. Journal of Tropical Oceanography, 2010, 29(1): 132−135. doi: 10.3969/j.issn.1009-5470.2010.01.020
    [24] 钟超, 孙凯峰, 廖岩, 等. 广东流沙湾海草分布现状及其与不同养殖生境的关系[J]. 海洋环境科学, 2019, 38(4): 521−527. doi: 10.12111/j.mes20190406

    Zhong Chao, Sun Kaifeng, Liao Yan, et al. Distribution status of seagrass and its relationship with different habitat types in Liusha Bay of Guangdong Province[J]. Marine Environmental Science, 2019, 38(4): 521−527. doi: 10.12111/j.mes20190406
    [25] 陈石泉, 庞巧珠, 蔡泽富, 等. 海南黎安港海草床分布特征、健康状况及影响因素分析[J]. 海洋科学, 2020, 44(11): 57−64.

    Chen Shiquan, Pang Qiaozhu, Cai Zefu, et al. Analysis of distribution characteristics, health status, and influencing factors of seagrass bed in Li’an Lagoon, Hainan Island[J]. Marine Sciences, 2020, 44(11): 57−64.
    [26] 陈石泉, 林国尧, 蔡泽富, 等. 海南东寨港海草资源分布特征及影响因素[J]. 湿地科学与管理, 2019, 15(4): 53−56. doi: 10.3969/j.issn.1673-3290.2019.04.13

    Chen Shiquan, Lin Guoyao, Cai Zefu, et al. Patterns and impacting factors of the distribution of the seagrass resources in Dongzhai Harbour of Hainan[J]. Wetland Science & Management, 2019, 15(4): 53−56. doi: 10.3969/j.issn.1673-3290.2019.04.13
    [27] 陈石泉, 吴钟解, 陈晓慧, 等. 海南岛南部海草资源分布现状调查分析[J]. 海洋学报, 2015, 37(6): 106−113.

    Chen Shiquan, Wu Zhongjie, Chen Xiaohui, et al. Investigation and analysis of the distribution status of seagrass resources in the southern part of Hainan Island[J]. Haiyang Xuebao, 2015, 37(6): 106−113.
    [28] 黄小平, 黄良民, 李颖虹, 等. 华南沿海主要海草床及其生境威胁[J]. 科学通报, 2006, 51(S2): 136−142. doi: 10.1007/s11434-006-9136-5

    Huang Xiaoping, Huang Liangmin, Li Yinghong, et al. Main seagrass beds and threats to their habitats in the coastal sea of South China[J]. Chinese Science Bulletin, 2006, 51(S2): 136−142. doi: 10.1007/s11434-006-9136-5
    [29] 赵东波. 常用沉积物粒度分类命名方法探讨[J]. 海洋地质动态, 2009, 25(8): 41−44, 46. doi: 10.3969/j.issn.1009-2722.2009.08.009

    Zhao Dongbo. Discussion on general methods of the grain-size classification and nomenclature of sediments[J]. Marine Geology Letters, 2009, 25(8): 41−44, 46. doi: 10.3969/j.issn.1009-2722.2009.08.009
    [30] 程鹏, 高抒, 李徐生. 激光粒度仪测试结果及其与沉降法、筛析法的比较[J]. 沉积学报, 2001, 19(3): 449−455. doi: 10.3969/j.issn.1000-0550.2001.03.023

    Cheng Peng, Gao Shu, Li Xusheng. Evaluation of a wide range laser particle size analyses and comparison with pipette and sieving methods[J]. Acta Sedimentologica Sinica, 2001, 19(3): 449−455. doi: 10.3969/j.issn.1000-0550.2001.03.023
    [31] 钱宝, 刘凌, 肖潇. 土壤有机质测定方法对比分析[J]. 河海大学学报(自然科学版), 2011, 39(1): 34−38.

    Qian Bao, Liu Ling, Xiao Xiao. Comparative tests on different methods for content of soil organic matter[J]. Journal of Hohai University (Natural Sciences), 2011, 39(1): 34−38.
    [32] Turner T. Complexity of early and middle successional stages in a rocky intertidal surfgrass community[J]. Oecologia, 1983, 60(1): 56−65. doi: 10.1007/BF00379320
    [33] Larkum A W D, Orth R J, Duarte C M. Seagrasses: Biology, Ecology and Conservation[M]. Dordrecht: Springer, 2006.
    [34] Lee S Y, Choi C I, Suh Y, et al. Seasonal variation in morphology, growth and reproduction of Zostera caespitosa on the southern coast of Korea[J]. Aquatic Botany, 2005, 83(4): 250−262. doi: 10.1016/j.aquabot.2005.03.003
    [35] 江鑫, 潘金华, 韩厚伟, 等. 底质与水深对大叶藻和丛生大叶藻分布的影响[J]. 大连海洋大学学报, 2012, 27(2): 101−104. doi: 10.3969/j.issn.1000-9957.2012.02.002

    Jiang Xin, Pan Jinhua, Han Houwei, et al. Effects of substrate and water depth on distribution of sea weeds Zostera marina and Z. caespitosa[J]. Journal of Dalian Ocean University, 2012, 27(2): 101−104. doi: 10.3969/j.issn.1000-9957.2012.02.002
    [36] Yabe T, Ikusima I, Tsuchiya T. Production and population ecology of Phyllospadix iwatensis Makino. I. leaf growth and biomass in an intertidal zone[J]. Ecological Research, 1995, 10(3): 291−299. doi: 10.1007/BF02347855
    [37] 杨芳, 贺达汉. 生境破碎化对生物多样性的影响[J]. 生态科学, 2006, 25(6): 564−567. doi: 10.3969/j.issn.1008-8873.2006.06.020

    Yang Fang, He Dahan. Effects of habitat fragmentation on biodiversity[J]. Ecologic Science, 2006, 25(6): 564−567. doi: 10.3969/j.issn.1008-8873.2006.06.020
    [38] 武晶, 刘志民. 生境破碎化对生物多样性的影响研究综述[J]. 生态学杂志, 2014, 33(7): 1946−1952.

    Wu Jing, Liu Zhimin. Effect of habitat fragmentation on biodiversity: a review[J]. Chinese Journal of Ecology, 2014, 33(7): 1946−1952.
    [39] Sweatman J L, Layman C A, Fourqurean J W. Habitat fragmentation has some impacts on aspects of ecosystem functioning in a sub-tropical seagrass bed[J]. Marine Environmental Research, 2017, 126: 95−108. doi: 10.1016/j.marenvres.2017.02.003
    [40] Jaeger J A G. Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation[J]. Landscape Ecology, 2000, 15(2): 115−130. doi: 10.1023/A:1008129329289
    [41] Forman R T T. Some general principles of landscape and regional ecology[J]. Landscape Ecology, 1995, 10(3): 133−142. doi: 10.1007/BF00133027
    [42] Lee K S, Park S R, Kim Y K. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review[J]. Journal of Experimental Marine Biology and Ecology, 2007, 350(1/2): 144−175.
    [43] Ralph P J, Durako M J, Enríquez S, et al. Impact of light limitation on seagrasses[J]. Journal of Experimental Marine Biology and Ecology, 2007, 350(1/2): 176−193.
    [44] 柳杰, 张沛东, 郭栋, 等. 环境因子对海草生长及光合生理影响的研究进展[J]. 水产科学, 2012, 31(2): 119−124. doi: 10.3969/j.issn.1003-1111.2012.02.013

    Liu Jie, Zhang Peidong, Guo Dong, et al. Research advancement in effects of environmental factors on growth and photosynthetic physiology of sea weed[J]. Fisheries Science, 2012, 31(2): 119−124. doi: 10.3969/j.issn.1003-1111.2012.02.013
    [45] Dawes C J, Andorfer J, Rose C, et al. Regrowth of the seagrass Thalassia testudinum into propeller scars[J]. Aquatic Botany, 1997, 59(1/2): 139−155.
    [46] Frank J S, Timothy J L, David W C, et al. Scarring of Florida’s seagrasses: assessment and management options[R]. Florida: Florida Department of Environmental Protection, 1995.
    [47] 李诗奇, 张彦浩, 李政, 等. 大叶藻对氮磷营养盐的吸收动力学特征[J]. 植物生态学报, 2020, 44(7): 772−781. doi: 10.17521/cjpe.2019.0335

    Li Shiqi, Zhang Yanhao, Li Zheng, et al. Uptake kinetics of nitrogen and phosphorus by Zostera marina[J]. Chinese Journal of Plant Ecology, 2020, 44(7): 772−781. doi: 10.17521/cjpe.2019.0335
    [48] 陈玉, 韩秋影, 郑凤英, 等. 东楮岛海草组织碳氮含量特征及环境影响因素[J]. 中国海洋大学学报(自然科学学报), 2016, 46(5): 56−64.

    Chen Yu, Han Qiuying, Zheng Fengying, et al. Carbon and nitrogen content characteristics in seagrass tissues and environmental effects in Dongchu Island[J]. Periodical of Ocean University of China, 2016, 46(5): 56−64.
    [49] 李诗奇, 李政, 王仙宁, 等. 植物对氮磷元素吸收利用的生理生态学过程研究进展[J]. 山东农业科学, 2019, 51(3): 151−157.

    Li Shiqi, Li Zheng, Wang Xianning, et al. Advances in research of physiological and ecological process of nitrogen and phosphorus absorption and utilization in plant[J]. Shandong Agricultural Sciences, 2019, 51(3): 151−157.
    [50] Ramı́rez-Garcı́a P, Terrados J, Ramos F, et al. Distribution and nutrient limitation of surfgrass, Phyllospadix scouleri and Phyllospadix torreyi, along the Pacific coast of Baja California (México)[J]. Aquatic Botany, 2002, 74(2): 121−131. doi: 10.1016/S0304-3770(02)00050-5
    [51] 柳杰. 不同环境条件对天鹅湖大叶藻生长及光合色素含量的影响[D]. 青岛: 中国海洋大学, 2011.

    Liu Jie. Effects of different environmental conditions on the growth and photosynthetic pigment contents of Zostera marina L. in Swan Lake[D]. Qingdao: Ocean University of China, 2011
    [52] 黄驰, 张景平, 江志坚, 等. 海草对营养盐的吸收过程及其与附生藻类的竞争机制[J]. 渔业研究, 2017, 39(3): 222−228.

    Huang Chi, Zhang Jingping, Jiang Zhijian, et al. Nutrients uptake processes of seagrass and its competition with epiphytic algae[J]. Journal of Fisheries Research, 2017, 39(3): 222−228.
    [53] 高亚平, 蒋增杰, 杜美荣, 等. 除草剂扑草净和阿特拉津对海草与大型藻类的毒性比较[J]. 水生生物学报, 2017, 41(4): 930−934. doi: 10.7541/2017.116

    Gao Yaping, Jiang Zengjie, Du Meirong, et al. Comparison of the herbicide atrazine and prometryn’s toxicity on seagrass and seaweed[J]. Acta Hydrobiologica Sinica, 2017, 41(4): 930−934. doi: 10.7541/2017.116
    [54] 李磊, 黄小平. 重金属在海草中累积及其对海草生长的影响[J]. 生态学杂志, 2009, 28(9): 1897−1904.

    Li Lei, Huang Xiaoping. Research advances in heavy metals accumulation in seagrass and its effects on seagrass growth[J]. Chinese Journal of Ecology, 2009, 28(9): 1897−1904.
    [55] 刘燕山, 郭栋, 张沛东, 等. 北方澙湖大叶藻植株枚订移植法的效果评估与适宜性分析[J]. 植物生态学报, 2015, 39(2): 176−183. doi: 10.17521/cjpe.2015.0017

    Liu Yanshan, Guo Dong, Zhang Peidong, et al. Assessing establishment success and suitability analysis of Zostera marina transplants using staple method in northern lagoons[J]. Chinese Journal of Plant Ecology, 2015, 39(2): 176−183. doi: 10.17521/cjpe.2015.0017
    [56] 张倩, 柳杰, 张沛东, 等. 不同水流流速对大叶藻移植植株存活、生长及光合色素含量的影响[J]. 海洋环境科学, 2015, 34(6): 806−812.

    Zhang Qian, Liu Jie, Zhang Peidong, et al. Effects of different current velocities on survival, growth and photosynthetic pigment contents of Zostera marina transplants[J]. Marine Environmental Science, 2015, 34(6): 806−812.
    [57] 程冉, 侯鑫, 王欢, 等. 红纤维虾形草移植植株存活、生长和生理对不同水动力条件的响应[J]. 渔业科学进展, 2022, 43(2): 21−31.

    Cheng Ran, Hou Xin, Wang Huan, et al. Survival, growth, and physiological responses of surfgrass transplants to different hydrodynamic regimes[J]. Progress in Fishery Sciences, 2022, 43(2): 21−31.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  827
  • HTML全文浏览量:  307
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-02
  • 修回日期:  2022-04-27
  • 网络出版日期:  2022-05-09
  • 刊出日期:  2022-08-15

目录

    /

    返回文章
    返回